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Definitions Parameterized Complexity

Fixed-Parameter Tractability

Definition

A parameterized decision problem is a language L ⊆ Σ∗×N.

L is fixed-parameter tractable if there exists some computable

function f : N→ N such that for each input (x ,k), it can be

determined in time f (k) · |x |O(1) whether or not (x ,k) is in L .
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Definitions Parameterized Complexity

Fixed-Parameter Tractability

Definition

A parameterized decision problem is a language L ⊆ Σ∗×N.

L is fixed-parameter tractable if there exists some computable

function f : N→ N such that for each input (x ,k), it can be

determined in time f (k) · |x |O(1) whether or not (x ,k) is in L .

FPT is the class of fixed-parameter tractable problems.

Note: FPT 6= polynomial-time solvability for constant k .

XP is the class of problems solvable in time O(|x |f (k)), where

f : N→ N is a computable function depending only on k .

Note: FPT ⊆ XP.
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Definitions Parameterized Complexity

Kernelization

Definition

A parameterized problem L has a (polynomial-size) problem kernel if

there is a polynomial-time algorithm (called kernelization) that on input

(x ,k) computes (x ′,k ′) such that

1 (x ,k) ∈ L if and only if (x ′,k ′) ∈ L , and

2 |(x ′,k ′)| ≤ f (k) for some (polynomial) function f : N→ N depending

only on k .
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Definitions Parameterized Complexity

Kernelization

Definition

A parameterized problem L has a (polynomial-size) problem kernel if

there is a polynomial-time algorithm (called kernelization) that on input

(x ,k) computes (x ′,k ′) such that

1 (x ,k) ∈ L if and only if (x ′,k ′) ∈ L , and

2 |(x ′,k ′)| ≤ f (k) for some (polynomial) function f : N→ N depending

only on k .

Note:

L ∈ FPT if and only if L has a problem kernel.

Kernelization typically employs polynomial-time executable data

reduction rules to shrink the input size.
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Definitions Parameterized Complexity

Parameterized Reducibility

Definition

Given two parameterized problems L and L ′ (both encoded over

Σ∗×N), we say L parameterizedly reduces to L ′ if there are two

functions, f : Σ∗ → Σ∗ and g : N→ N, such that for each instance

(x ,k) of L ,

1 (x ,k) ∈ L if and only if (f (x),g(k)) ∈ L ′, and

2 f can be computed in FPT time.
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Definitions Parameterized Complexity

Parameterized Reducibility

Definition

Given two parameterized problems L and L ′ (both encoded over

Σ∗×N), we say L parameterizedly reduces to L ′ if there are two

functions, f : Σ∗ → Σ∗ and g : N→ N, such that for each instance

(x ,k) of L ,

1 (x ,k) ∈ L if and only if (f (x),g(k)) ∈ L ′, and

2 f can be computed in FPT time.

A parameterized problem L is hard for a parameterized complexity

class C if every problem in C parameterizedly reduces to L .

L is complete for C if it both belongs to C and is hard for C .
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Definitions Parameterized Complexity

Parameterized Complexity

Weighted Weft-t Depth-d Circuit Satisfiability (WCS(t,d))

Given: A boolean circuit of weft t and depth d , and an integer

bound k .

Question: Is there a satisfying assignment of weight k (i.e., setting

k variables to true)?
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Definitions Parameterized Complexity

Parameterized Complexity

Weighted Weft-t Depth-d Circuit Satisfiability (WCS(t,d))

Given: A boolean circuit of weft t and depth d , and an integer

bound k .

Question: Is there a satisfying assignment of weight k (i.e., setting

k variables to true)?

Here, a boolean circuit may contain

NOT, AND, and OR gates of fan-in at most 2,

large AND and OR gates of unbounded fan-in.

The weft of a circuit is the maximum number of large gates on any

path from input to output gates.

The depth of a circuit is the maximum number of gates on any path

from input to output gates.
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Definitions Parameterized Complexity

Parameterized Complexity: The W-Hierarchy

Definition

The W-hierarchy consists of the classes W[t], t ≥ 1, where

W[t] is the class of parameterized problems parameterizedly reducible

(w.r.t. the given parameter) to WCS(t,d) for some constant d ≥ 1.
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Definitions Parameterized Complexity

Parameterized Complexity: The W-Hierarchy

Definition

The W-hierarchy consists of the classes W[t], t ≥ 1, where

W[t] is the class of parameterized problems parameterizedly reducible

(w.r.t. the given parameter) to WCS(t,d) for some constant d ≥ 1.

Note:

FPT ⊆ W[1]⊆ W[2]⊆ ·· · ⊆ W[t]⊆ ·· · ⊆ XP.

To classify some problem L , parameterizedly reduce

L to some known problem in W[t] (membership in W[t]) and

some known W[t]-hard problem to L (W[t]-hardness).
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Definitions Elections and Voting Systems

Elections and Voting Systems

Definition (Election)

An election is a pair (C ,V ) with

a finite set C of candidates (or alternatives) and

a finite list V of votes expressing the voters’ preferences over the

candidates in C .

Jörg Rothe (HHU Düsseldorf) Parameterized Complexity in COMSOC 13 / 54



Definitions Elections and Voting Systems

Elections and Voting Systems

Definition (Election)

An election is a pair (C ,V ) with

a finite set C of candidates (or alternatives) and

a finite list V of votes expressing the voters’ preferences over the

candidates in C .

Definition (Voting System)

A voting system is a set of rules that

define the form of the voters’ ballots (representation of the voters’

preferences) in V and

determine the winner(s) in C according to the ballots in V .
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Definitions Elections and Voting Systems

Scoring Rules: Plurality, k-Approval, and Borda

Scoring vector α = (α1,α2, . . . ,αm) with α1 ≥ α2 ≥ ·· · ≥ αm
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Definitions Elections and Voting Systems

Scoring Rules: Plurality, k-Approval, and Borda

Scoring vector

Plurality:

k-Approval:

Borda:

α = (α1,α2, . . . ,αm) with α1 ≥ α2 ≥ ·· · ≥ αm

α = (1,0, . . . ,0)

α = (1, . . . ,1
︸ ︷︷ ︸

k

,0, . . . ,0)

α = (m−1,m−2, . . . ,0)
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Definitions Elections and Voting Systems

Scoring Rules: Plurality, k-Approval, and Borda

Scoring vector

Plurality:

k-Approval:

Borda:

α = (α1,α2, . . . ,αm) with α1 ≥ α2 ≥ ·· · ≥ αm

α = (1,0, . . . ,0)

α = (1, . . . ,1
︸ ︷︷ ︸

k

,0, . . . ,0)

α = (m−1,m−2, . . . ,0)

Plurality 2-Approval Borda

Preference profile A B C A B C A B C

A > B > C 1 0 0 1 1 0 2 1 0

B > C > A 0 1 0 0 1 1 0 2 1

A > B > C 1 0 0 1 1 0 2 1 0

Scores: 2 1 0 2 3 1 4 4 1
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Definitions Elections and Voting Systems

Voting Systems Based on Pairwise Comparison: Example

Pairwise comparison

Preference profile A?B A?C A?D B?C B?D C?D

A> D > C > B A A A C D D

C > D > B > A B C D C D C

C > D > B > A B C D C D C

B > D > A> C B A D B B D

A> C > D > B A A A C D C

A> C > B > D A A A C B C

Winner of the comparison: ? A ? C D C

Table: Example of an election without a Condorcet winner
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Definitions Elections and Voting Systems

Voting Systems Based on Pairwise Comparison: Copeland

Majority graph

A

C

B

D

3 : 3

4 : 2

4 : 2

3 : 3

4 : 2

5 : 1
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plus α points for each tie, where

α ∈ [0,1] is a rational number.
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CopelandαScore(B) = α ,

CopelandαScore(C ) = 2,

CopelandαScore(D) = 1+α .

A
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4 : 2

4 : 2

3 : 3

4 : 2

5 : 1
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Definitions Elections and Voting Systems

Voting Systems Based on Pairwise Comparison: Copeland

Majority graph
Copelandα score of a candidate:

1 point for each pairwise win

plus α points for each tie, where

α ∈ [0,1] is a rational number.

CopelandαScore(A) = 1+2α ,

CopelandαScore(B) = α ,

CopelandαScore(C ) = 2,

CopelandαScore(D) = 1+α .

A

C

B

D

3 : 3

4 : 2

4 : 2

3 : 3

4 : 2

5 : 1

C wins if α = 0;
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Definitions Elections and Voting Systems

Voting Systems Based on Pairwise Comparison: Copeland

Majority graph
Copelandα score of a candidate:

1 point for each pairwise win

plus α points for each tie, where

α ∈ [0,1] is a rational number.

CopelandαScore(A) = 1+2α ,

CopelandαScore(B) = α ,

CopelandαScore(C ) = 2,

CopelandαScore(D) = 1+α .

A

C

B

D

3 : 3

4 : 2

4 : 2

3 : 3

4 : 2

5 : 1

C wins if α = 0; A and C win if α = 1/2;
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Definitions Elections and Voting Systems

Voting Systems Based on Pairwise Comparison: Copeland

Majority graph
Copelandα score of a candidate:

1 point for each pairwise win

plus α points for each tie, where

α ∈ [0,1] is a rational number.

CopelandαScore(A) = 1+2α ,

CopelandαScore(B) = α ,

CopelandαScore(C ) = 2,

CopelandαScore(D) = 1+α .

A

C

B

D

3 : 3

4 : 2

4 : 2

3 : 3

4 : 2

5 : 1

C wins if α = 0; A and C win if α = 1/2; A wins if α = 1.
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Voting Problems Winner and Score Problems

Winner and Score Problems: Definition

E -Winner

Given: An election (C ,V ) and a distinguished candidate c ∈ C .

Question: Is c a winner of (C ,V ) according to voting system E ?
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Voting Problems Winner and Score Problems

Winner and Score Problems: Definition

E -Winner

Given: An election (C ,V ) and a distinguished candidate c ∈ C .

Question: Is c a winner of (C ,V ) according to voting system E ?

For most voting systems (scoring rules, Condorcet, approval,

Copeland, . . . ), the winners can be determined in polynomial time.
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Voting Problems Winner and Score Problems

Winner and Score Problems: Definition

E -Winner

Given: An election (C ,V ) and a distinguished candidate c ∈ C .

Question: Is c a winner of (C ,V ) according to voting system E ?

For most voting systems (scoring rules, Condorcet, approval,

Copeland, . . . ), the winners can be determined in polynomial time.

A few exceptions: Winner determination is complete for PNP
|| in

Dodgson (Hemaspaandra, Hemaspaandra, Rothe, JACM 44(6), 1997),

Young (Rothe, Spakowski, Vogel, TOCS 36(4), 2003), and

Kemeny voting (Hemaspaandra, Spakowski, Vogel, TCS 349(3), 2005).
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Voting Problems Winner and Score Problems

Winner and Score Problems: Example of Dodgson Election

Pairwise comparison

Preference profile A?B A?C A?D B?C B?D C?D

A> D > C > B A A A C D D

C > D > B > A B C D C D C

C > D > B > A B C D C D C

B > D > A> C B A D B B D

A> C > D > B A A A C D C

A> C > B > D A A A C B C

Winner of the comparison: ? A ? C D C

Table: Example of an election without a Condorcet winner
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Voting Problems Winner and Score Problems

Winner and Score Problems: Example of Dodgson Election

Majority graph
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B

D

3 : 3

4 : 2
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3 : 3

4 : 2

5 : 1
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Voting Problems Winner and Score Problems

Winner and Score Problems: Example of Dodgson Election

Majority graph
Dodgson score of a candidate:

smallest number of swaps needed

to make her a Condorcet winner.A

C

B

D

3 : 3

4 : 2

4 : 2
3 : 3

4 : 2

5 : 1
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Voting Problems Winner and Score Problems

Winner and Score Problems: Example of Dodgson Election

Majority graph
Dodgson score of a candidate:

smallest number of swaps needed

to make her a Condorcet winner.

A has a Dodgson score of 2.

A

C

B

D

3 : 3

4 : 2

4 : 2
3 : 3

4 : 2

5 : 1
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Voting Problems Winner and Score Problems

Winner and Score Problems: Example of Dodgson Election

Majority graph
Dodgson score of a candidate:

smallest number of swaps needed

to make her a Condorcet winner.

A has a Dodgson score of 2.

A

C

B

D

3 : 3

4 : 2

4 : 2
3 : 3

4 : 2

5 : 1

2nd vote: C > D > B
x

> A

Jörg Rothe (HHU Düsseldorf) Parameterized Complexity in COMSOC 19 / 54



Voting Problems Winner and Score Problems

Winner and Score Problems: Example of Dodgson Election

Majority graph
Dodgson score of a candidate:

smallest number of swaps needed

to make her a Condorcet winner.

A has a Dodgson score of 2.

A

C

B

D

3 : 3

4 : 2

4 : 2

4 : 2

5 : 1

4 : 2

2nd vote: C > D > B
x

> A  C > D
x

> A> B
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Voting Problems Winner and Score Problems

Winner and Score Problems: Example of Dodgson Election

Majority graph
Dodgson score of a candidate:

smallest number of swaps needed

to make her a Condorcet winner.

A has a Dodgson score of 2.

A

C

B

D

4 : 2

4 : 2

4 : 2

5 : 1

4 : 2

4 : 2

2nd vote: C > D > B
x

> A  C > D
x

> A> B  C > A> D > B
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Voting Problems Winner and Score Problems

Winner and Score Problems: Example of Dodgson Election

Majority graph
Dodgson score of a candidate:

smallest number of swaps needed

to make her a Condorcet winner.

A has a Dodgson score of 2.

C has a Dodgson score of 2.

A

C

B

D

3 : 3

4 : 2

4 : 2
3 : 3

4 : 2

5 : 1

5th vote: A
x

> C >D > B

6th vote: A
x

> C > B > D
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Voting Problems Winner and Score Problems

Winner and Score Problems: Example of Dodgson Election

Majority graph
Dodgson score of a candidate:

smallest number of swaps needed

to make her a Condorcet winner.

A has a Dodgson score of 2.

C has a Dodgson score of 2.

A

C

B

D

3 : 3

4 : 2

4 : 2
3 : 3

4 : 2

5 : 1

5th vote: A
x

> C >D > B  C > A> D > B

6th vote: A
x

> C > B > D  C > A> B > D
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Voting Problems Winner and Score Problems

Winner and Score Problems: Example of Young Election

Majority graph
Young score of a candidate: largest

number of votes for which she is a

weak Condorcet winner.A

C

B

D

3 : 3

4 : 2

4 : 2

3 : 3

4 : 2

5 : 1
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Voting Problems Winner and Score Problems

Winner and Score Problems: Example of Young Election

Majority graph
Young score of a candidate: largest

number of votes for which she is a

weak Condorcet winner.

Dual Young score of a candidate:

smallest number of votes that need

to be deleted to make her a weak

Condorcet winner.

A

C

B

D

3 : 3

4 : 2

4 : 2

3 : 3

4 : 2

5 : 1
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Voting Problems Winner and Score Problems

Winner and Score Problems: Example of Young Election

Majority graph
Young score of a candidate: largest

number of votes for which she is a

weak Condorcet winner.

Dual Young score of a candidate:

smallest number of votes that need

to be deleted to make her a weak

Condorcet winner.

A has a dual Young score of 0.

A

C

B

D

3 : 3

4 : 2

4 : 2

3 : 3

4 : 2

5 : 1
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Voting Problems Winner and Score Problems

Winner and Score Problems: Example of Young Election

Majority graph
Young score of a candidate: largest

number of votes for which she is a

weak Condorcet winner.

Dual Young score of a candidate:

smallest number of votes that need

to be deleted to make her a weak

Condorcet winner.

A has a dual Young score of 0.

C has a dual Young score of 2.

A

C

B

D

3 : 3

4 : 2

4 : 2

3 : 3

4 : 2

5 : 1
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Voting Problems Winner and Score Problems

Winner and Score Problems: Example of Young Election

Majority graph A> D > C > B

C >D > B > A

C >D > B > A

B > D > A> C

A> C > D > B

A> C > B > D

C has a dual Young score of 2.

A

C

B

D

2 : 2 2 : 2

2 : 2

4 : 0

4 : 0 3 : 1
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Voting Problems Winner and Score Problems

Dodgson and Young Score: Definition and Overview

Dodgson Score

Given: An election (C ,V ), a distinguished candidate c ∈ C , and

an integer k > 0.

Question: Is the Dodgson score of c in (C ,V ) at most k?
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Voting Problems Winner and Score Problems

Dodgson and Young Score: Definition and Overview

Dodgson Score

Given: An election (C ,V ), a distinguished candidate c ∈ C , and

an integer k > 0.

Question: Is the Dodgson score of c in (C ,V ) at most k?

Young Score and Dual Young Score are defined analogously.
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Voting Problems Winner and Score Problems

Dodgson and Young Score: Definition and Overview

Dodgson Score

Given: An election (C ,V ), a distinguished candidate c ∈ C , and

an integer k > 0.

Question: Is the Dodgson score of c in (C ,V ) at most k?

Young Score and Dual Young Score are defined analogously.

These problems are NP-complete (Bartholdi, Tovey, Trick, SCW 6(2), 1989).
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Voting Problems Winner and Score Problems

Dodgson and Young Score: Overview

Parameter Dodgson Dual Young Young

m =# candidates FPT FPT FPT

n =# votes W[1]-hard FPT (O∗(2n)) FPT (O∗(2n))

k =# swaps FPT (O∗(2k)) — —

k =# deleted votes — W[2]-complete —

k =# remaining votes — — W[2]-complete

Table: Overview of parameterized complexity for Score problems

Bartholdi, Tovey, Trick: Voting Schemes for Which it Can Be Difficult to Tell Who Won the Election, SCW 6(2), 1989

Young: Extending Condorcet’s Rule, JET 16(2), 1977

Fellows, Jansen, Lokshtanov, Rosamond, Saurabh: Determining the Winner of a Dodgson Election is Hard, FSTTCS, 2010

Betzler, Guo, Niedermeier: Parameterized Computational Complexity of Dodgson and Young Elections, I&C 208(2), 2010

Rothe, Spakowski, Vogel: Exact Complexity of the Winner Problem for Young Elections, TOCS 36(4), 2003
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Voting Problems Winner and Score Problems

Dodgson Score is FPT by Integer Linear Program

min∑
i ,j

j · xi ,j subject to

∀i ∈ Ṽ : ∑
j

xi ,j = Ni

∀y ∈ C : ∑
i ,j

ei ,j ,y · xi ,j ≥ dy

xi ,j ≥ 0
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Dodgson Score is FPT by Integer Linear Program

min∑
i ,j

j · xi ,j subject to

∀i ∈ Ṽ : ∑
j

xi ,j = Ni

∀y ∈ C : ∑
i ,j

ei ,j ,y · xi ,j ≥ dy

xi ,j ≥ 0

where

Ṽ lists the different preference types
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Voting Problems Winner and Score Problems

Dodgson Score is FPT by Integer Linear Program

min∑
i ,j

j · xi ,j subject to

∀i ∈ Ṽ : ∑
j

xi ,j = Ni

∀y ∈ C : ∑
i ,j

ei ,j ,y · xi ,j ≥ dy

xi ,j ≥ 0

where

Ṽ lists the different preference types

Ni is the number of votes of type i
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Voting Problems Winner and Score Problems

Dodgson Score is FPT by Integer Linear Program

min∑
i ,j

j · xi ,j subject to

∀i ∈ Ṽ : ∑
j

xi ,j = Ni

∀y ∈ C : ∑
i ,j

ei ,j ,y · xi ,j ≥ dy

xi ,j ≥ 0

where

Ṽ lists the different preference types

Ni is the number of votes of type i

xi ,j is the number of type-i votes for

which the designated candidate c

will be moved upward by j positions
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Voting Problems Winner and Score Problems

Dodgson Score is FPT by Integer Linear Program

min∑
i ,j

j · xi ,j subject to

∀i ∈ Ṽ : ∑
j

xi ,j = Ni

∀y ∈ C : ∑
i ,j

ei ,j ,y · xi ,j ≥ dy

xi ,j ≥ 0

where

Ṽ lists the different preference types

Ni is the number of votes of type i

xi ,j is the number of type-i votes for

which the designated candidate c

will be moved upward by j positions

dy is c ’s deficit with respect to y
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Voting Problems Winner and Score Problems

Dodgson Score is FPT by Integer Linear Program

min∑
i ,j

j · xi ,j subject to

∀i ∈ Ṽ : ∑
j

xi ,j = Ni

∀y ∈ C : ∑
i ,j

ei ,j ,y · xi ,j ≥ dy

xi ,j ≥ 0

where

Ṽ lists the different preference types

Ni is the number of votes of type i

xi ,j is the number of type-i votes for

which the designated candidate c

will be moved upward by j positions

dy is c ’s deficit with respect to y

ei ,j ,y =







1 if c gains an additional voter support against y when

c is moved upward by j positions in a type-i vote

0 otherwise
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Voting Problems Winner and Score Problems

FPT by ILPs

Many further FPT results are based on ILPs:
Betzler, Hemmann, Niedermeier (IJCAI-2009)

Faliszewski, Hemaspaandra, Hemaspaandra, Rothe (JAIR 35, 2009)

Betzler, Niedermeier, Woeginger (IJCAI-2011)

Dorn, Schlotter (Algorithmica 64(1), 2012)

Bredereck, Chen, Hartung, Kratsch, Niedermeier, Suchý (AAAI-2012)

Alon, Bredereck, Chen, Kratsch, Niedermeier, Woeginger (ADT-2013)
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Voting Problems Winner and Score Problems

FPT by ILPs

Many further FPT results are based on ILPs:
Betzler, Hemmann, Niedermeier (IJCAI-2009)

Faliszewski, Hemaspaandra, Hemaspaandra, Rothe (JAIR 35, 2009)

Betzler, Niedermeier, Woeginger (IJCAI-2011)

Dorn, Schlotter (Algorithmica 64(1), 2012)

Bredereck, Chen, Hartung, Kratsch, Niedermeier, Suchý (AAAI-2012)

Alon, Bredereck, Chen, Kratsch, Niedermeier, Woeginger (ADT-2013)

For a bounded number of variables, such ILPs can be solved in

polynomial time by the famous algorithm due to H. Lenstra Jr.: Integer

Programming with a Fixed Number of Variables, MOR 8, 1983.
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FPT by ILPs

Many further FPT results are based on ILPs:
Betzler, Hemmann, Niedermeier (IJCAI-2009)

Faliszewski, Hemaspaandra, Hemaspaandra, Rothe (JAIR 35, 2009)

Betzler, Niedermeier, Woeginger (IJCAI-2011)

Dorn, Schlotter (Algorithmica 64(1), 2012)

Bredereck, Chen, Hartung, Kratsch, Niedermeier, Suchý (AAAI-2012)

Alon, Bredereck, Chen, Kratsch, Niedermeier, Woeginger (ADT-2013)

For a bounded number of variables, such ILPs can be solved in

polynomial time by the famous algorithm due to H. Lenstra Jr.: Integer

Programming with a Fixed Number of Variables, MOR 8, 1983.

Advantage: Great classification tool, mainly of theoretical interest.
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Voting Problems Winner and Score Problems

FPT by ILPs

Many further FPT results are based on ILPs:
Betzler, Hemmann, Niedermeier (IJCAI-2009)

Faliszewski, Hemaspaandra, Hemaspaandra, Rothe (JAIR 35, 2009)

Betzler, Niedermeier, Woeginger (IJCAI-2011)

Dorn, Schlotter (Algorithmica 64(1), 2012)

Bredereck, Chen, Hartung, Kratsch, Niedermeier, Suchý (AAAI-2012)

Alon, Bredereck, Chen, Kratsch, Niedermeier, Woeginger (ADT-2013)

For a bounded number of variables, such ILPs can be solved in

polynomial time by the famous algorithm due to H. Lenstra Jr.: Integer

Programming with a Fixed Number of Variables, MOR 8, 1983.

Advantage: Great classification tool, mainly of theoretical interest.

Disadvantage: HUGE exponential function in number of variables ⇒

not practically feasible; e.g., above ILP has m ·m! variables xi,j.
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Voting Problems Winner and Score Problems

Research Challenge 1: ILP ⇒ direct FPT Algorithms

Research Challenge 1

Can one replace the ILPs in these known ILP-based FPT

results by direct combinatorial fixed-parameter algorithms?
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Voting Problems Possible Winner

Possible Winner Problem: Example

Chris

Anna

Belle

Figure: Trip preferences of Anna, Belle, and Chris
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Voting Problems Possible Winner

Possible Winner Problem: Definition

E -Possible-Winner

Given: An election (C ,V ), where the votes are represented as

partial orders over C , and a distinguished candidate c .

Question: Is c a possible E winner of (C ,V ), i.e., is it possible to

fully extend each vote in V such that c wins the election?

Introduced by Konczak and Lang: Voting Procedures with Incomplete

Preferences, IJCAI Workshop on Advances in Preference Handling, 2005
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Voting Problems Possible Winner

Possible Winner Problem: Definition

E -Possible-Winner

Given: An election (C ,V ), where the votes are represented as

partial orders over C , and a distinguished candidate c .

Question: Is c a possible E winner of (C ,V ), i.e., is it possible to

fully extend each vote in V such that c wins the election?

Introduced by Konczak and Lang: Voting Procedures with Incomplete

Preferences, IJCAI Workshop on Advances in Preference Handling, 2005

Classical complexity has been studied by many authors, e.g., by:

Walsh, AAAI, 2007

Betzler and Dorn, JCSS 76(8), 2010

Xia and Conitzer, JAIR 41, 2011

Baumeister and Rothe, IPL 112(5), 2012
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Voting Problems Possible Winner

Possible Winner Problem: Overview

Parameter Borda k-Approval Copelandα

m =# candidates FPT FPT FPT

n =# votes para-NP-comp para-NP-comp ?

s =# undetermined
O∗(1.82s ) O∗(2s) O∗(2s)candidate pairs

u =max# undeter-
para-NP-comp para-NP-comp para-NP-compmined candidate pairs

Table: Overview of classical and parameterized complexity of Possible Winner

ILP based on Lenstra: Integer Programming with a Fixed Number of Variables, MOR 8, 1983

Betzler, Hemmann, Niedermeier: A Multivariate Complexity Analysis of Determining Possible Winners Given Incomplete

Votes, IJCAI, 2009

Xia and Conitzer: Determining Possible and Necessary Winners Given Partial Orders, JAIR 41, 2011
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Voting Problems Possible Winner

Possible Winner Problem: Overview for k-Approval

Parameter Result Remark

k =# of ones in vector NP-comp for each fixed k ≥ 2

(t,k), t =# incomplete votes FPT super-exponential kernel

(t,k ′), k ′ =# of zeros in vector FPT O

(

min
{

2t
2k ′ ,2tk

′
· (tk ′)k

′
})

Table: Overview

Xia and Conitzer: Determining Possible and Necessary Winners Given Partial Orders, JAIR 41, 2011

Betzler: On Problem Kernels for Possible Winner Determination Under the k-Approval Protocol, MFCS, 2010
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Voting Problems Possible Winner

Research Challenge 2: Possible Winner

Research Challenge 2

Previous classical results on Possible Winner

consider only voting systems with efficient winner

determination.
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Voting Problems Possible Winner

Research Challenge 2: Possible Winner

Research Challenge 2

Previous classical results on Possible Winner

consider only voting systems with efficient winner

determination.

Do the FPT results for Dodgson Score, Young

Score, Dual Young Score, and Kemeny

Score transfer to Possible Winner?
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Voting Problems Possible Winner

Research Challenge 2: Possible Winner

Research Challenge 2

Previous classical results on Possible Winner

consider only voting systems with efficient winner

determination.

Do the FPT results for Dodgson Score, Young

Score, Dual Young Score, and Kemeny

Score transfer to Possible Winner?

What about the parameters

average number of candidate pairs

maximum number of candidate pairs

in which a candidate is involved?
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Voting Problems Bribery

Bribery: Definition

E -Bribery

Given: An election (C ,V ), a distinguished candidate c ∈ C , and

a nonnegative integer k ≤ ‖V ‖.

Question: Is it possible to make c an E winner of the election that

results from changing no more than k votes in V ?
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Voting Problems Bribery

Bribery: Definition

E -Bribery

Given: An election (C ,V ), a distinguished candidate c ∈ C , and

a nonnegative integer k ≤ ‖V ‖.

Question: Is it possible to make c an E winner of the election that

results from changing no more than k votes in V ?

E -$Bribery: Each voter has an individual price and the briber a budget.

Faliszewski, Hemaspaandra, Hemaspaandra: How Hard Is Bribery in Elections?, JAIR 35, 2009
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Voting Problems Bribery

Bribery: Definition

E -Bribery

Given: An election (C ,V ), a distinguished candidate c ∈ C , and

a nonnegative integer k ≤ ‖V ‖.

Question: Is it possible to make c an E winner of the election that

results from changing no more than k votes in V ?

E -$Bribery: Each voter has an individual price and the briber a budget.

Faliszewski, Hemaspaandra, Hemaspaandra: How Hard Is Bribery in Elections?, JAIR 35, 2009

E -Swap Bribery: Each voter has a swap-bribery price function that gives

the cost of swapping any two adjacent candidates.
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Voting Problems Bribery

Bribery: Definition

E -Bribery

Given: An election (C ,V ), a distinguished candidate c ∈ C , and

a nonnegative integer k ≤ ‖V ‖.

Question: Is it possible to make c an E winner of the election that

results from changing no more than k votes in V ?

E -$Bribery: Each voter has an individual price and the briber a budget.

Faliszewski, Hemaspaandra, Hemaspaandra: How Hard Is Bribery in Elections?, JAIR 35, 2009

E -Swap Bribery: Each voter has a swap-bribery price function that gives

the cost of swapping any two adjacent candidates.

E -Shift Bribery: Like above, except that each swap must involve c .

Elkind, Faliszewski, Slinko: Swap Bribery, SAGT, 2009
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Voting Problems Bribery

Swap Bribery: Overview for k-Approval

Parameter Result Remark

β = budget W[1]-hard
for n = 1; reduction from

Multi-Colored Clique

k =# of ones W[1]-hard reduction from Clique

m =# candidates FPT for constant k ; ILP

n =# votes FPT for constant k ; color-coding

(β ,n) FPT kernel with n2β 2 cand’s, n2β votes

(β ,n,k) FPT kernel with (n+ k)β cand’s, n2β votes

Table: Overview

Dorn and Schlotter: Multivariate Complexity Analysis of Swap Bribery, Algorithmica 64(1), 2012
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Voting Problems Bribery

Research Challenge 3: Bribery

For most natural voting systems E , when parameterized by the

number of candidates,

E -Bribery tends to be FPT, whereas

the other bribery variants are only known to be in XP.

Jörg Rothe (HHU Düsseldorf) Parameterized Complexity in COMSOC 38 / 54



Voting Problems Bribery

Research Challenge 3: Bribery

For most natural voting systems E , when parameterized by the

number of candidates,

E -Bribery tends to be FPT, whereas

the other bribery variants are only known to be in XP.

Research Challenge 3

For natural voting systems E , what is the exact parameterized

complexity of the problems

E -$Bribery,

E -Swap Bribery, and

E -Shift Bribery

when parameterized by the number of candidates?
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Voting Problems Bribery

Research Challenge 4: FPT Approximation Schemes

Max Vertex Cover is known to be W[1]-complete w.r.t. the

parameter k of vertices to pick.
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Voting Problems Bribery

Research Challenge 4: FPT Approximation Schemes

Max Vertex Cover is known to be W[1]-complete w.r.t. the

parameter k of vertices to pick.

Best known approximation algorithm (due to Ageev and Sviridenko,

IPCO-1999) achieves a ratio of 3
4

(i.e., 3
4OPT edges are guaranteed to be covered).
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Voting Problems Bribery

Research Challenge 4: FPT Approximation Schemes

Max Vertex Cover is known to be W[1]-complete w.r.t. the

parameter k of vertices to pick.

Best known approximation algorithm (due to Ageev and Sviridenko,

IPCO-1999) achieves a ratio of 3
4

(i.e., 3
4OPT edges are guaranteed to be covered).

Marx (2008) provided an FPT approximation scheme that, for each

positive ε ,

covers at least (1− ε)OPT edges and

runs in FPT time w.r.t. k and ε.
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Voting Problems Bribery

Research Challenge 4: FPT Approximation Schemes

Max Vertex Cover is known to be W[1]-complete w.r.t. the

parameter k of vertices to pick.

Best known approximation algorithm (due to Ageev and Sviridenko,

IPCO-1999) achieves a ratio of 3
4

(i.e., 3
4OPT edges are guaranteed to be covered).

Marx (2008) provided an FPT approximation scheme that, for each

positive ε ,

covers at least (1− ε)OPT edges and

runs in FPT time w.r.t. k and ε.

Research Challenge 4

For which computationally hard voting problems (in particular

those related to bribery) are there FPT approximation schemes?
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Voting Problems Control

Control: Definition

Electoral Control

Structural change exerted by an external actor, the “chair,” intending

constructive: to make a distinguished candidate win

destructive: to prevent a distinguished candidate from winning

Bartholdi, Tovey, Trick: How hard is it to control an election?, Mathematical Comput.

Modelling, 16(8/9), 1992

Hemaspaandra, Hemaspaandra, Rothe: Anyone but him: The complexity of precluding an

alternative, Artificial Intelligence, 171(5-6), 2007.

Jörg Rothe (HHU Düsseldorf) Parameterized Complexity in COMSOC 40 / 54



Voting Problems Control

Types of Control

Candidate Control: Voter Control:
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Voting Problems Control

Types of Control

Candidate Control:

Adding Candidates (limited and

unlimited number)

Voter Control:

Adding Voters
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Voting Problems Control

Types of Control

Candidate Control:

Adding Candidates (limited and

unlimited number)

Deleting Candidates

Voter Control:

Adding Voters

Deleting Voters
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Voting Problems Control

Types of Control

Candidate Control:

Adding Candidates (limited and

unlimited number)

Deleting Candidates

Partition of Candidates (with or

without run-off)

Voter Control:

Adding Voters

Deleting Voters

Partition of Voters
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Voting Problems Control

Types of Control

Candidate Control:

Adding Candidates (limited and

unlimited number)

Deleting Candidates

Partition of Candidates (with or

without run-off)

Voter Control:

Adding Voters

Deleting Voters

Partition of Voters

E -Constructive-Control-by-Deleting-Voters (E -CCDV)

Given: An election (C ,V ), a distinguished candidate c ∈ C , and

a positive integer k ≤ ‖V ‖.

Question: Does there exist a sublist V ′ of V with ‖V rV ′‖ ≤ k such

that c is an E winner of (C ,V ′)?
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Voting Problems Control

Bucklin Voting (BV)

Example (Bucklin Voting)

C = {a,b,c ,d} and V = (v1,v2,v3,v4,v5), so maj(V ) = 3

v1 : b c a d

v2 : c d a b

v3 : a d c b

v4 : c a d b

v5 : b d c a
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Voting Problems Control

Bucklin Voting (BV)

Example (Bucklin Voting)

C = {a,b,c ,d} and V = (v1,v2,v3,v4,v5), so maj(V ) = 3

v1 : b c a d

v2 : c d a b

v3 : a d c b

v4 : c a d b

v5 : b d c a

a b c d

score1 1 2 2 0
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Voting Problems Control

Bucklin Voting (BV)

Example (Bucklin Voting)

C = {a,b,c ,d} and V = (v1,v2,v3,v4,v5), so maj(V ) = 3

v1 : b c a d

v2 : c d a b

v3 : a d c b

v4 : c a d b

v5 : b d c a

a b c d

score1 1 2 2 0

score2 2 2 3 3
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Voting Problems Control

Bucklin Voting (BV)

Example (Bucklin Voting)

C = {a,b,c ,d} and V = (v1,v2,v3,v4,v5), so maj(V ) = 3

v1 : b c a d

v2 : c d a b

v3 : a d c b

v4 : c a d b

v5 : b d c a

a b c d

score1 1 2 2 0

score2 2 2 3 3

⇒ c and d are level 2 Bucklin winners in (C ,V )
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Voting Problems Control

Control by Partition of Voters

Example (BV)

C = {a,b,c,d ,e}, V = (v1, . . . ,v5), V1 = (v1,v2), V2 = (v3,v4,v5)

(C ,V )

v1 bac d e

v2 bd c ae

v3 c ad be

v4 ad c be

v5 c e bad

→ a
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1st stage: (C ,V1) (C ,V2)

Example (BV)
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Voting Problems Control

Control by Partition of Voters

1st stage: (C ,V1) (C ,V2)

W1 W2

Example (BV)

C = {a,b,c,d ,e}, V = (v1, . . . ,v5), V1 = (v1,v2), V2 = (v3,v4,v5)

(C ,V ) (C ,V1) (C ,V2)

v1 bac d e bac d e

v2 bd c ae bd c ae

v3 c ad be c ad be

v4 ad c be ad c be

v5 c e bad c e bad

→ a W1 = {b} W2 = {c}
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Voting Problems Control

Control by Partition of Voters

1st stage: (C ,V1) (C ,V2)

W1 W2

2nd stage: (W1∪W2,V )

Example (BV)

C = {a,b,c,d ,e}, V = (v1, . . . ,v5), V1 = (v1,v2), V2 = (v3,v4,v5)

(C ,V ) (C ,V1) (C ,V2) (W1 ∪W2,V )

v1 bac d e bac d e bc

v2 bd c ae bd c ae bc

v3 c ad be c ad be c b

v4 ad c be ad c be c b

v5 c e bad c e bad c b

→ a W1 = {b} W2 = {c}
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Voting Problems Control

Control by Partition of Voters

1st stage: (C ,V1) (C ,V2)

W1 W2

2nd stage: (W1∪W2,V )

Example (BV)

C = {a,b,c,d ,e}, V = (v1, . . . ,v5), V1 = (v1,v2), V2 = (v3,v4,v5)

(C ,V ) (C ,V1) (C ,V2) (W1 ∪W2,V )

v1 bac d e bac d e bc

v2 bd c ae bd c ae bc

v3 c ad be c ad be c b

v4 ad c be ad c be c b

v5 c e bad c e bad c b

→ a W1 = {b} W2 = {c} → c
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Voting Problems Control

Classical Control Complexity: Overview

voting rule C
A
U
C

C
A
C

C
D
C

C
P
C
-T

E

C
P
C
-T

P

C
R
P
C
-T

E

C
R
P
C
-T

P

C
A
V

C
D
V

C
P
V
-T

E

C
P
V
-T

P

C D C D C D C D C D C D C D C D C D C D C D

plurality R R R R R R R R R R R R R R V V V V V V R R

Condorcet I V I V V I V I V I V I V I R V R V R V R V

approval I V I V V I V I I I V I I I R V R V R V R V

Copelandα

for α = 0 V V R V R V R V R V R V R V R R R R R R R R

0< α < 1 R V R V R V R V R V R V R V R R R R R R R R

α = 1 V V R V R V R V R V R V R V R R R R R R R R

SP-AV R R R R R R R R R R R R R R R V R V R V R R

fallback R R R R R R R R R R R R R R R V R V R R R R

Bucklin R R R R R R R R R R R R R R R V R V R R R S

RV I V I V V I V I I I V I I I R V R V R V R V

NRV R R R R R R R R R R R R R R R V R V R R R R

Schulze R S R S R S R V R V R V R V R V R V R R R R

Table: The complexity of control problems for various voting rules. Key:

“I” means immunity, “S” susceptibility, “V” vulnerability, and “R” resistance.
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Voting Problems Control

Parameterized Control Complexity: Overview

Plurality Condorcet Maximin Copelandα BV/FV

CCAC W[2]-hard P W[2]-hard W[2]-comp W[2]-hard

CCDC W[2]-hard P ? W[2]-comp W[2]-hard

CCAV P W[1]-hard W[1]-hard ? W[2]-hard

CCDV P W[2]-comp W[1]-hard ? W[2]-hard

DCAC W[2]-hard P ? P W[2]-hard

DCDC W[1]-hard P ? P W[2]-hard

DCAV P P W[1]-hard ? P

DCDV P P W[1]-hard ? P

Table: Overview of classical and parameterized complexity of control problems.

All W-hardness results are w.r.t. the output parameter.
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Voting Problems Control

Parameterized Control Complexity: Any FPT Results?
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Voting Problems Control

Parameterized Control Complexity: Any FPT Results?

Faliszewski, Hemaspaandra, Hemaspaandra, Rothe (JAIR, 2009) give

some FPT results for control by adding/deleting candidates/voters in

Copelandα obtained via ILPs w.r.t. the parameters:

m=# of candidates

n=# of votes
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Voting Problems Control

Parameterized Control Complexity: Any FPT Results?

Faliszewski, Hemaspaandra, Hemaspaandra, Rothe (JAIR, 2009) give

some FPT results for control by adding/deleting candidates/voters in

Copelandα obtained via ILPs w.r.t. the parameters:

m=# of candidates

n=# of votes

Wang, Yang, Guo, Feng, Chen (COCOA-2013) show that, w.r.t. the

parameter d =# of deleted votes, k-Approval-CCDV is

W[2]-hard for unbounded k , yet

FPT with a polynomial problem kernel for constant k .
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Voting Problems Control

Research Challenge 5: Kernelization Complexity

Research Challenge 5

What is the kernelization complexity of FPT voting

problems w.r.t.

the number m of candidates,

the number n of votes, or

some parameter less than m or n?
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Voting Problems Control

Research Challenge 5: Kernelization Complexity

Research Challenge 5

What is the kernelization complexity of FPT voting

problems w.r.t.

the number m of candidates,

the number n of votes, or

some parameter less than m or n?

Can one find polynomial (or even linear) problem kernels

for these parameters?
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Voting Problems Single-Peaked Elections

Single-Peaked Elections: Example

Adams

Brown

Chavez

Pum
pkin

 P
ie

Taste
-O

!

Anna

Belle

Chris

Edgar

Figure: The annual charity Pumpkin Pie Taste-Off
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Voting Problems Single-Peaked Elections

Single-Peaked Elections: Example

C D E F G J N O P Q R S T U V W X Y Z

yummy
super-

Belle

Edgar

Chris

Anna

IHA B K L M

Sweetness very
sweet

tart

yucky

Yumminess

Figure: Preferences regarding sweetness of pumpkin pie
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Voting Problems Single-Peaked Elections

Single-Peaked Elections Generalized

Yang and Guo (arXiv, 2013) consider k-peaked elections, where each

voter’s preference can have up to k peaks.
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Voting Problems Single-Peaked Elections

Single-Peaked Elections Generalized

Yang and Guo (arXiv, 2013) consider k-peaked elections, where each

voter’s preference can have up to k peaks.

One can similarly generalize

single-crossing elections:

The voters can be linearly ordered such that along this order, for each

pair of candidates,

either all voters agree on the ordering of these two candidates

or there is a single crossing point where the voters switch from

preferring one candidate to the other.
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Voting Problems Single-Peaked Elections

Single-Peaked Elections Generalized

Yang and Guo (arXiv, 2013) consider k-peaked elections, where each

voter’s preference can have up to k peaks.

One can similarly generalize

single-crossing elections:

The voters can be linearly ordered such that along this order, for each

pair of candidates,

either all voters agree on the ordering of these two candidates

or there is a single crossing point where the voters switch from

preferring one candidate to the other.

one-dimensional Euclidean elections:

Candidates and voters can be embedded into R such that each voter

prefers the closer one among any pair of candidates.
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Voting Problems Single-Peaked Elections

Research Challenge 6: Single-peaked ⇒ k-peaked

Research Challenge 6

How does the complexity of standard voting problems de-

pend on the parameter k in

k-peaked

k-crossing

k-dimensional Euclidean

elections?
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Voting Problems Single-Peaked Elections

Nearly Single-Peaked Elections

There are various measures for “nearness to single-peakedness”.

Elections can be made single-peaked by

deleting k voters
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Voting Problems Single-Peaked Elections

Nearly Single-Peaked Elections

There are various measures for “nearness to single-peakedness”.

Elections can be made single-peaked by

deleting k voters (a.k.a. maverick voters)

I wish I were 

a maverick.
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Voting Problems Single-Peaked Elections

Nearly Single-Peaked Elections

There are various measures for “nearness to single-peakedness”.

Elections can be made single-peaked by

deleting k voters (a.k.a. maverick voters)

I wish I were 

a maverick.

deleting k candidates
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Voting Problems Single-Peaked Elections

Nearly Single-Peaked Elections

There are various measures for “nearness to single-peakedness”.

Elections can be made single-peaked by

deleting k voters (a.k.a. maverick voters)

I wish I were 

a maverick.

deleting k candidates

k swaps in the preferences of each voter
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Voting Problems Single-Peaked Elections

Nearly Single-Peaked Elections

There are various measures for “nearness to single-peakedness”.

Elections can be made single-peaked by

deleting k voters (a.k.a. maverick voters)

I wish I were 

a maverick.

deleting k candidates

k swaps in the preferences of each voter

contracting groups of up to k candidates (showing up as a block in

each vote) into a single candidate
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Voting Problems Single-Peaked Elections

Research Challenge 7: Nearness to Single-peakedness

Research Challenge 7

How can one use such “nearness to single-peakedness” pa-

rameters to obtain FPT results for NP-hard voting problems?
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Other COMSOC Problems Optimal Lobbying, Judgment Aggregation, and Cake Cutting

No Time for Other COMSOC Problems
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Other COMSOC Problems Optimal Lobbying, Judgment Aggregation, and Cake Cutting

No Time for Other COMSOC Problems

Questions?

Jörg Rothe (HHU Düsseldorf) Parameterized Complexity in COMSOC 54 / 54


	Overview
	Definitions
	Parameterized Complexity
	Elections and Voting Systems

	Voting Problems
	Winner and Score Problems
	Possible Winner
	Bribery
	Control
	Single-Peaked Elections

	Other COMSOC Problems
	Optimal Lobbying, Judgment Aggregation, and Cake Cutting


