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ABSTRACT
One view of voting is that voters have inherently different prefer-
ences – de gustibus non est disputandum – and that voting is merely
a method for reaching a reasonable compromise solution. An alter-
native view is that some of the alternatives really are better in an
objective sense, and by voting over the alternatives we hope to be
more likely to reach the correct outcome. In this latter view, we
can see the votes as noisy estimates of the truth. Specifying a prob-
abilistic noise model gives us a natural “optimal” voting rule for
determining the outcome based on the votes, namely, the function
that takes the votes as input and produces the outcome that maxi-
mizes the likelihood of these votes as output.

We will first review some of the work on the maximum likeli-
hood approach to voting. Most of this work supposes that, con-
ditional on the correct outcome, votes are independent. In real-
ity, however, voters are clearly influenced by the opinions of those
close to them. How should we model the effects of the social net-
work, and what does this imply for the maximum likelihood ap-
proach? We will first review an earlier result [1] that states that,
under certain assumptions, the social network structure should not
affect the voting rule. We then consider a new model under which
this is not true, and prove that computing the probability of the
votes given the correct outcome is #P-hard under this model. On
the other hand, if the goal is to simultaneously also give a point
estimate of the hidden variables in the model, then the optimization
problem can be solved in polynomial time.

1. INTRODUCTION
Not all voting settings are created equal. In some, none of the al-

ternatives are inherently the “wrong” or “right” choice. Each voter
finds some alternatives more palatable than others, and this is fun-
damentally due to each voter’s personal preferences. In particular,
it may be the case that the voters know everything there is to know
about the situation and that they understand perfectly how the dif-
ferent personal circumstances in which other voters find themselves
lead them to have different preferences. The objective is merely to
reach an outcome that most voters find acceptable. In other set-
tings, however, the situation is different, and we may suppose that
some alternatives are inherently better than others. For example, the
voters may genuinely be trying to evaluate each alternative’s abso-
lute quality (according to some measure), and the reason that they
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vote differently is not that they have different personal interests in
the matter, but rather that it is difficult to evaluate an alternative’s
quality and the voters simply differ in their assessments.

Of course, both of these are descriptions of extremes, and in
many voting settings we find elements of both. A standard po-
litical election clearly involves the voters having different personal
interests in the outcome and voting accordingly. Meanwhile, how-
ever, there is typically also uncertainty about the candidates. For
example, would a given candidate be willing to work long hours
if elected? Even if all voters agree that such a good work ethic
is important and desirable, they may have different assessments of
which candidate would work longer hours. However, in spite of the
fact that these two views of voting often blur together, it is concep-
tually useful to consider the extremes. In this paper, we will con-
sider the second extreme, where one alternative is inherently better
than the other, and any disagreement among the voters is merely
due to different assessments of this absolute quality. We will be
interested in the optimal design of the voting rule in this context.
That is, given the votes, how should the outcome of the election be
chosen to maximize the probability that the correct one is chosen?

The specific approach that we will consider is the maximum like-
lihood estimation approach to the design of voting rules. Its basic
idea is that voters obtain noisy estimates of the alternatives’ quali-
ties and vote accordingly; and, given a precise probabilistic model
for how the alternatives’ true qualities lead to these noisy observa-
tions, we can attempt to estimate the correct outcome of the election
as the one that maximizes the likelihood of the observed votes.

This approach dates back all the way to Condorcet [2], but there
has been a recent resurgence of interest in it, especially from peo-
ple in the computational social choice community. It involves tech-
niques from optimization and reasoning under uncertainty. Most
of this work so far has assumed that (conditional on the correct
outcome) votes are independent. In this paper, we will discuss a
new model in which the social network structure among the agents
affects how votes are formed.

2. BACKGROUND
In this section, we first review the maximum likelihood approach

to voting in settings where votes are drawn independently (con-
ditional on the correct outcome). Then, we discuss an existing
model [1] in which the votes are not independent—the social net-
work structure plays a role—but nevertheless this social network
structure does not end up affecting the optimal voting rule.

2.1 The Maximum Likelihood Approach to Vot-
ing

The approach is easiest to describe in the context where there
are only two alternatives—call them−1 and 1. One of these two is



the “correct” (or “better”) alternative, but it is not directly observed
which one. Let c ∈ {−1, 1} denote the correct alternative (and −c
the other alternative). In the most basic model, the voters’ votes are
i.i.d., with each voter voting for c with some fixed probability p >
0.5 and for −c with the remaining probability 1− p. Hence, voter
v’s vote Av represents a noisy estimate of the truth. Conditional on
−1 (resp. 1) being the correct alternative, a specific vote profile AV

(a vector of votes, one for each voter) that has n−1 votes for−1 and
n1 votes for 1 has probability P (AV |c = −1) = pn−1(1 − p)n1

(resp. P (AV |c = 1) = pn1(1 − p)n−1 ). We would like to pick
the winner of our election—equivalently, our estimate ĉ of c—to
be the one that maximizes this likelihood. Because p > 1 − p, we
should pick ĉ = −1 (resp. ĉ = 1) if n−1 > n1 (resp. n1 > n−1).
That is, we should simply pick the majority winner, the one that re-
ceives more votes (with ties broken arbitrarily). The focus on max-
imizing the likelihood of the observed profile can also be justified
as follows: if we a priori believe that either alternative is equally
likely to be the correct one, then the alternative that maximizes the
likelihood of the observed votes is also the maximum a posteriori
estimate of the correct alternative. This is because by Bayes’ rule
we have P (c = ĉ|AV ) = P (AV |c = ĉ)P (c = ĉ)/P (AV ). Be-
cause P (c = ĉ) (due to the equally-likely-a-priori assumption) and
P (AV ) do not depend on ĉ, choosing ĉ to maximize P (AV |c = ĉ)
is equivalent to choosing it to maximize P (c = ĉ|AV ). The ap-
proach can be generalized to settings where there is a potentially
different probability pi for every voter i, resulting in a weighted
majority rule [3, 4].

In many settings, there are more than two alternatives. How
should the above model be extended to such a setting? First, it
is natural to presume now that there is a correct ranking of all the
alternatives. Moreover, each voter’s noisy estimate is now also a
ranking of the alternatives. This fits well with the theory of voting
more generally, where a vote is often assumed to rank all alterna-
tives. But what is the probability distribution over such votes given
the correct ranking? Condorcet [2] attempted to give such a model,
and this was later made more precise by Young [5, 6], who showed
that the optimal voting rule for the resulting noise model is one
proposed by Kemeny [7]. A number of articles have since been de-
voted to the study of different noise models and the optimal rules to
which they lead [8, 9, 10, 11]. Elkind and Slinko [12] give a recent
overview. In this paper, however, we will restrict our attention to
settings with two alternatives.

2.2 Review: A Model Where Social Network
Structure Plays a Role but Does Not Mat-
ter

We next discuss a model [1] in which votes are not indepen-
dent (even when conditioning on the correct outcome). Instead,
the voters are the vertices V of a social network. The probabil-
ity of a profile AV of votes (where Av is the vote of voter v) is∏

v∈V fv(Av, AN(v)|c), where N(v) is the set of voters that are
neighbors of v. Hence, fv is intended to capture the interaction
between v and its neighbors (and the truth, i.e., the correct alter-
native). Then, there is the further assumption in the model that for
each v ∈ V , f factors as fv(Av, AN(v)|c) = gv(Av|c)hv(Av, AN(v)).
In words, there is one factor representing that the voter is more
likely to vote for the correct alternative, and another factor repre-
senting the interaction between a voter and its neighbors (which
does not depend on the correct alternative). Under this assumption,
it can be shown that the social network structure, represented by the
functions hv , does not affect the maximum likelihood rule. This is

for the simple reason that

argmax
ĉ

∏
v∈V

fv(Av, AN(v)|ĉ)

= argmax
ĉ

∏
v∈V

gv(Av|ĉ)hv(Av, AN(v))

= argmax
ĉ

∏
v∈V

gv(Av|ĉ)

3. A NEW MODEL THAT TAKES SOCIAL
NETWORK STRUCTURE INTO ACCOUNT

The conclusion from the above model that we can simply ignore
social network structure should, of course, be taken with a grain
of salt. Other models will lead to different conclusions. The most
interesting aspect of the above result, in my opinion, is that it is
at least not obvious how social network structure should affect the
voting rule. In the below, we will consider a new model that leads to
a different conclusion. Like the model considered above, this new
model undeniably leaves out many important aspects of how agents
form their votes in social networks. Perhaps most notably, this new
model still does not include a temporal component for modeling
the gradual evolution of opinion. The objective here, rather, is to
give a simple model that helps to illustrate which phenomena we
are likely to encounter as we move to more complex models.

3.1 The Independent Conversations Model
The model can be described as follows. Every voter will have

a conversation with each of her neighbors, so that there is exactly
one conversation per edge. This conversation will turn out in favor
of one of the two alternatives. The outcomes of the conversations
are i.i.d., and every voter votes according to the majority of the out-
comes of the conversations in which she participated. More specif-
ically:

DEFINITION 1 (INDEPENDENT CONVERSATIONS MODEL). For
simplicity, assume that every voter has an odd number of neigh-
bors. Associated with every edge e = (v, w) is a random alter-
native Ae, which is equal to the correct winner c with probability
p > 0.5 and to the other alternative −c with probability 1 − p.
The edge profile AE = (Ae)e∈E is not directly observed, but each
vertex votes according to the majority of its incident edges, i.e.,
Av = maj{A(v,w)}w∈N(v). Hence, the probability of observing
the profile AV = (Av)v∈V given that the correct alternative is
ĉ is the sum of the probabilities of the edge profiles AE that are
consistent with AV , that is,

P (AV |ĉ) =
∑

AE : for all v∈V,
Av=maj{A(v,w)}w∈N(v)

pn(ĉ,AE)(1− p)|E|−n(ĉ,AE)

where n(ĉ, AE) is the number of edges associated with ĉ in AE .
The maximum likelihood alternative ĉ, then, is the one maximizing
this expression.

EXAMPLE 1. Figure 1 illustrates the model. At the top, it shows
the social network and the votes cast by the voters (vertices). Be-
low, it shows the (only) two different edge profiles (ways of labeling
the edges) that would result in this vote profile. If 1 is the correct
alternative, each of these edge profiles has probability p5(1− p)4.
Hence, P (AV |1) = 2p5(1 − p)4. (Here, P (AV |1) is shorthand
for P (AV |c = 1).) Similarly, P (AV | − 1) = 2p4(1 − p)5. It
follows that 1 maximizes the likelihood.



Figure 1: A social network with a vote profile for the vertices,
and the two edge profiles that are consistent with this vote pro-
file. Open vertices indicate votes for −1 and closed vertices
indicate votes for 1. Similarly, for the edge profile graphs, open
edges are associated with −1 and closed edges are associated
with 1.

Figure 2: A graph consisting of two cliques of size four. Open
vertices indicate votes for −1.

Note that under this model, it is possible that no edge profiles
are consistent with the observed votes—for example, if two vertices
that are each other’s only neighbor vote differently. To address this,
it would be straightforward to extend the model so that a vertex has
some small probability of voting against the majority of its incident
edges. Since the model is anyway supposed to be illustrative rather
than comprehensive, for the sake of simplicity, we will not flesh out
this extension here.

The outcome in Example 1 was perhaps not surprising. Let
us now consider an example where it is not immediately obvious
which alternative should win.

EXAMPLE 2. Consider the graph in Figure 2, consisting of two
cliques of size 4. Suppose all these vertices vote for −1. Because
every vertex has 3 incident edges, an edge profile is consistent with
this profile AV cliques if and only if every vertex has at most one in-
cident edge that is associated with 1—that is, the edges associated
with 1 constitute a matching. In this graph, there is 1 matching
with 0 edges, there are 12 with 1 edge, 42 with 2 edges, 36 with
3 edges, and 9 with 4 edges. Thus, if −1 is in fact the correct
alternative, then the probability of AV cliques is P (AV cliques | − 1) =
p12+12p11(1−p)+42p10(1−p)2+36p9(1−p)3+9p8(1−p)4.
For p = 0.6, we obtain P (AV cliques | − 1) = 8.73 · 10−2. On the
other hand, if 1 is the correct alternative, then the probability of
AV cliques is P (AV cliques |1) = (1 − p)12 + 12(1 − p)11p + 42(1 −

Figure 3: A “wheel” graph (note there is no vertex in the mid-
dle). Closed vertices indicate votes for 1.

p)10p2 + 36(1 − p)9p3 + 9(1 − p)8p4. For p = 0.6, we obtain
P (AV cliques |1) = 4.71 · 10−3.

Now consider the graph in Figure 3. Suppose all these vertices
vote for 1. Again, because every vertex has 3 incident edges, an
edge profile is consistent with this profile AV wheel if and only if the
edges associated with −1 constitute a matching. In this graph,
there is 1 matching with 0 edges, there are 12 with 1 edge, 42 with
2 edges, 44 with 3 edges, and 7 with 4 edges. Using similar ex-
pressions as above, we obtain that for p = 0.6, P (AV wheel | − 1) =
4.99 · 10−3 and P (AV wheel |1) = 9.16 · 10−2.

Now consider taking the union of the two graphs. Because there
are no edges between the two graphs, they are drawn indepen-
dently, so P (AV union |c) = P (AV cliques |c)P (AV wheel |c). Thus we get,
for p = 0.6, that P (AV union | − 1) = 8.73 · 10−2 · 4.99 · 10−3 =
4.36 · 10−4 and P (AV union |1) = 4.71 · 10−3 · 9.16 · 10−2 =
4.31 · 10−4. Hence, −1 would be the maximum likelihood esti-
mate winner in this case. Intriguingly, if we change p to a value of
0.9 (but keep everything else the same), then the calculations be-
come P (AV union | − 1) = 8.20 · 10−1 · 8.15 · 10−8 = 6.68 · 10−8

and P (AV union |1) = 8.88 · 10−8 · 8.23 · 10−1 = 7.31 · 10−8 so
that then, 1 wins! Intuition can be given for this as follows: as
p goes to 1, one of the two graphs (the “correct” voters) will have
probability close to 1, and so the likelihood is primarily determined
by the other graph (the “incorrect” voters). The probability of the
latter graph is dominated by the terms with the largest matching (4
edges), because those have the fewest factors (1− p). Because the
two-cliques graph has more of those matchings, it is better to make
it the “incorrect” graph—it is easier to explain why it might have
voted so incorrectly.

3.2 Computational Hardness
In the examples above, we calculated probabilities by enumerat-

ing, or at least counting, the various edge profiles that could give
rise to the observed vote profiles. Can we scale this approach to
large graphs? For example, is there a scheme that always allows us
to count the various types of edge profiles quickly? Or, if this is
not possible, perhaps there is a shortcut that allows us to compute
the relevant probabilities without any counting? Unfortunately, the
following complexity result suggests that our problem is fundamen-
tally a hard counting problem.

THEOREM 1. Computing P (AV |ĉ) is #P-hard under the inde-
pendent conversations model.



Figure 4: An illustration of the reduction. On the left-hand
side, there is an instance of the problem of counting the num-
ber of perfect matchings in a bipartite graph. On the right-
hand side, there is an instance of the problem of computing
P (AV |ĉ). Here, again, open vertices indicate votes for −1, and
closed vertices indicate votes for 1.

PROOF. We reduce from the following problem: given a bi-
partite graph G′ with n′ vertices on each side, how many per-
fect matchings does it have? This problem is #P-complete [13].
Given this bipartite graph G′ = (V ′, E′), we construct a social
network G = (V,E) and votes AV over the alternatives −1 and 1
as follows. For each vertex v′ on the left side of V ′, in G we con-
struct a vertex vv′ , which votes for 1, and another nv′ − 1 vertices
v1v′ , . . . , v

nv′−1

v′ (where nv′ is the number of neighbors of v′ in G′;
w.l.o.g., nv′ ≥ 1), which all vote for 1 as well. For each vertex w′

on the right side of V ′, in G we construct a vertex vw′ , which votes
for −1, and another nw′ + 1 vertices v1w′ , . . . , v

nw′+1

w′ , which all
vote for 1 except for two (say, v1w′ and v2w′ vote for −1—again,
w.l.o.g., nw′ ≥ 1). We construct an edge from every viv′ (resp. ev-
ery viw′ ) to its corresponding vv′ (resp. vw′). Moreover, for every
edge (v′, w′) ∈ E′, we construct an edge (vv′ , vw′) ∈ E (call
these the “original” edges). Figure 4 illustrates the reduction.

Which edge profiles ÂE are consistent with the profile AV ?
First, we note that every viv′ (resp. every viw′ ) has only a single
edge. The alternative with which that edge is associated must thus
coincide with the alternative chosen by viv′ (resp. viw′ ). For each
left-hand-side vv′ ∈ V , this immediately gives nv′ − 1 edges in-
cident to vv′ that are associated with 1. Because vv′ votes for 1
and has 2nv′ − 1 incident edges in G, at least one of the original
edges incident to vv′ must be associated with 1 as well. On the
other hand, for each right-hand-side vw′ ∈ V , vw′ has only two
non-original incident edges that are associated with −1. Because
vw′ votes for −1 and has 2nw′ + 1 incident edges in G, at least
nw′ − 1 of the original edges incident to vw′ must be associated
with −1—or, equivalently, at most one of the original edges inci-
dent to vw′ may be associated with 1. It follows that for ÂE to
be consistent with AV , every vv′ must have exactly one incident
original edge associated with 1 (or otherwise some vw′ would have
more than one), and similarly every vw′ must have exactly one inci-
dent original edge associated with 1 (or otherwise some vv′ would
have less than one). That is, ÂE is consistent with AV if and only
if the original edges associated with 1 constitute a perfect matching
(and the non-original edges take their required associated alterna-
tive). Therefore, the number of consistent edge profiles is equal
to the number of perfect matchings in the original bipartite graph.
Every one of these edge profiles has the same probability (because
they all have the same number of edges associated with 1), and

therefore the probability P (AV |ĉ) is proportional to the number of
matchings in the original bipartite graph.

3.3 Estimating the Correct Alternative and the
Edge Profile Together Is Easy

As should be clear from the above proof, the computational hard-
ness of computing the relevant probabilities is due to the hidden
variables (AE) over whose possible values we must sum. It seems
such computational hardness is likely to occur for many other mod-
els that involve hidden variables. However, another approach is to
compute an estimate not only of the correct winner (summing over
all the hidden variables in the process), but rather to estimate the
correct winner together with the hidden variables, so that we need
not sum over the latter, but rather have a point estimate of them. In
the model considered here, this corresponds to estimating the cor-
rect winner c together with the edge profile AE , so as to maximize
P (AV , ÂE |ĉ). Note that P (AV , AE |c) = P (AV |AE , c)P (AE |c),
where P (AV |AE , c) = P (AV |AE) is 1 if AE is consistent with
AV and 0 otherwise. Therefore, the goal is to find ĉ and ÂE to
maximize P (ÂE |ĉ), under the constraint that ÂE is consistent with
AV .1 It turns out that it is actually possible to do so in polynomial
time. In fact, we can do so even under the following slightly richer
model, in which different edges can have different probabilities of
being associated with the correct alternative.

DEFINITION 2 (INDEPENDENT WEIGHTED CONVERSATIONS MODEL).
This model is identical to the independent conversations model
from Definition 1, except here, rather than a single universal value
p, there is a separate probability pe ≥ 1/2 associated with each
edge, which is the probability that that edge will be associated with
the correct alternative.

THEOREM 2. An element of argmax(ĉ,ÂE) P (AV , ÂE |ĉ) can
be computed in polynomial time, even in the independent weighted
conversations model.

PROOF. As discussed above, the goal is to find ĉ and ÂE to
maximize P (ÂE |ĉ), under the constraint that ÂE is consistent with
AV . For each possibility for ĉ, we proceed by reducing the prob-
lem to a maximum weighted b-matching problem (for a discussion
of this problem and further references, see, for example, Penn and
Tennenholtz [14]). This is a generalized weighted matching prob-
lem in which each vertex v has a lower bound lv and an upper
bound uv on how many of its incident edges may be chosen in the
matching, and the edges have weights. We wish to maximize the
total weight of the chosen edges. (In the general version of the
problem, it is possible to choose an edge more than once, i.e., asso-
ciate an unrestricted nonnegative integer with each edge; moreover,
lower and upper bounds (capacities) on the number of times each
edge can be chosen may be provided. We will only need the case
where each edge can be chosen at most once.)

In the reduction from our problem to the b-matching problem,
we keep the graph the same. Choosing an edge in the b-matching
1It should be pointed out here that there is no guarantee that this
will result in the same estimate ĉ as in the previous case where
we sum over all edge profiles. A similar issue occurs in the stan-
dard model (with conditionally independent votes) when there are
more than two alternatives. There, we have to choose whether to
estimate the entire correct ranking, or merely the correct top alter-
native. What we obtain in the latter case is not guaranteed to be
equal to the top alternative in our estimate of the correct ranking.
For further discussion, see Elkind and Slinko [12].



problem will correspond to associating it with our current estimate
of the correct alternative ĉ (and not choosing it will correspond to
associating it with our current estimate of the incorrect alternative
−ĉ). Accordingly, for a vertex v that is voting for ĉ and has nv

neighbors, we set lv = (nv + 1)/2 (recall that nv is odd by as-
sumption) and uv = nv . For a vertex v that is voting for −ĉ, we
set lv = 0 and uv = (nv − 1)/2. These conditions are necessary
and sufficient for ÂE to be consistent with AV . Furthermore, we
set the weight of edge e to we = log pe− log(1−pe).2 This results
in a total objective value of∑

chosen e

(log pe − log(1− pe)) =

−
∑
e∈E

log(1− pe) +
∑

chosen e

log pe +
∑

not chosen e

log(1− pe)

that we seek to maximize. Because −
∑

e∈E log(1− pe) is a con-
stant, this is equivalent to maximizing∑

chosen e

log pe +
∑

not chosen e

log(1− pe)

But by exponentiation, this is equivalent to maximizing

(
∏

chosen e

pe)(
∏

not chosen e

(1− pe)) = P (ÂE |ĉ)

as required.

The fact that estimating the hidden variables together with the
correct alternative can be done in polynomial time may not gener-
alize to other models. Nevertheless, it seems likely that in many
models, it will still be easier than summing over all the hidden
variables; it may be, for example, the difference between solving
an NP-hard problem and a #P-hard one.

4. CONCLUSION
Most of the work on interpreting voting rules as maximum like-

lihood estimators so far has assumed that voters’ votes are drawn
independently (conditional on the correct outcome). While this as-
sumption results in some nice characterizations, in many contexts it
is clearly unrealistic. Often, voters have the opportunity to discuss
the alternatives with neighboring voters before casting their votes,
and this will affect their votes. On the other hand, it is not straight-
forward to create a noise model that captures all the aspects of how
conversations with other voters affect vote formation. A model that
truly achieves this would presumably be quite baroque. Neverthe-
less, simple models, which undoubtedly leave out many real-world
aspects of social vote formation, can nevertheless provide insight
into how an election organizer should take social network structure
into account in the design of the voting rule (when it is possible to
do so).

In this paper, we first reviewed basic existing results on MLE
voting rules, paying particular attention to a result that, for a partic-
ular type of noise model that does take social network structure into
account, the optimal voting rule does not depend on this network
structure. Then, to illustrate how the same result may not hold un-
der different models that take social network structure into account,
we considered a new noise model—the independent conversations
model—in which for every edge, there is a conversation that settles

2In the case of independent voters with different probabilities pi of
choosing the correct outcome, Nitzan and Paroush [3] and Shapley
and Grofman [4] also use a weight log pi − log(1− pi).

on one of the two alternatives. The outcomes of these conversa-
tions are independent (conditional on the correct outcome), and a
voter votes according to the majority of the outcomes of the con-
versations in which she participated. We illustrated the model with
some examples. We showed that computing the conditional proba-
bility of a vote profile in this model is in fact #P-hard, by reduction
from the problem of computing the number of perfect matchings in
a bipartite graph. Intuitively, this hardness is due to the fact that we
need to sum over all possible edge profiles (combinations of out-
comes for the edges). Indeed, we then showed that if the goal is to
find a probability maximizing estimate of both the correct outcome
and the edge profile, this can be done in polynomial time using
matching techniques. The prevalence of matching techniques in
these results is intriguing.

There can be little doubt, though, that the independent conversa-
tions model leaves out many real-world aspects of how votes are so-
cially formed. The most obvious gap is that time still plays no role
in the model. It would better match reality to explicitly model the
evolution of a voter’s opinion over time. One interesting approach
would be to try to integrate DeGroot-style models of opinion for-
mation ([15]; for a recent article with further references, see [16])
with the maximum likelihood approach to voting.
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