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ABSTRACT

We consider elections where the chair may attempt to influ-
ence the result by replacing candidates with the intention to
make a specific candidate lose (destructive control). We call
this form of control “replacement control” and we study its
computational complexity. We focus in particular on plu-
rality and veto, for which we prove that destructive control
via replacing candidates is computationally difficult. To get
more insight into the practical complexity of this problem,
we also perform an extensive experimental study.

Categories and Subject Descriptors

1.2.11 [[Distributed Artificial Intelligence]: Multiagent
systems

General Terms

Economics

Keywords
Social Choice, Voting, Control

1. INTRODUCTION

The result of an election can be influenced in many ways.
For instance, voters may submit insincere preferences or the
chair may introduce new candidates or choose the voting
rule. We focus here on control by the chair.

Control may be constructive when the chair’s goal is for
a certain candidate to win, or destructive when the chair’s
goal is to prevent a candidate winning. One action that
the chair can take is adding or deleting candidates or votes.
We consider a specific form of combining the basic control
actions, called replacement control, where we replace some
candidates (or votes) with the same number of other can-
didates (or votes). This can be seen as a combination of
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deletion and addition of candidates (or votes) in the same
quantity.

Replacement of candidates or voters in order to make some
candidate win or lose can be useful in many election settings,
for example when the chair feels that certain candidates or
voters are impeding the desired result. A real-life example
can be found in the current campaign for the Indian elec-
tions of the House of the People (Lok Sabha): the socialist
(Samajwadi) party replaced almost half of its candidates af-
ter an internal feedback that suggested that the party would
otherwise have won very few seats in the Lok Sabha. !

We consider a voting rule to be vulnerable (resp. resis-
tant) to a form of control if it is polynomial (resp. NP-
hard) to check whether that control can be achieved. We
prove that plurality and veto are both resistant to destruc-
tive control via replacing candidates.

We then run an extensive experimental analysis of the
practical complexity of this problem, to check whether such
voting rules are really difficult to control in practice. To do
that, we use real datasets from the preflib repository [8] and
we consider k-approval. Our experimental study shows that
plurality is more resistant to this form of control than other
versions of k-approval. Moreover, we compare the control
power of replacing candidates to the power of just adding or
deleting them, showing that replacing candidates add signif-
icant power to the chair of the election, with respect to to
the single control action of adding or deleting candidates.

2. BACKGROUND

An election E is a pair (C, V) where C'is a set of m candi-
dates and V' is a collection of n votes (linear orders over C').
A voting rule R takes an election and returns the winning
candidate from C. Besides the voters and the candidates,
there is also another agent, the chair who can influence, for
example, which candidates and voters participate.

Positional scoring rules give to each candidate points based
on their ranked position in each vote. The sum of the points
gives the total score of the candidate. The candidate with

"http://archive.indianexpress.com /news/samajwadi-
party-to-replace-24-ls-candidates/1184010/,
http://indiatoday.intoday.in/story /mulayam-singh-yadav-
changes-a-dozen-samajwadi-party-candidates-for-2014-
polls/1/326837.html



the highest score is the winner. Scoring rules differ in the
way points are allocated to candidates. This difference is
expressed by the scoring vector, which denotes the score
given by each vote to each candidate according to its po-
sition. We consider plurality (where the scoring vector is
v =< 1,0,...,0 >), veto (v =< 1,1,...,1,0 >), and k-
approval (v =< 1,1,...,1,0,0,...,0 >, where there are k
1’s).

There are many ways that the outcome of an election
can be influenced. Voters may submit insincere preferences,
whilst the chair may add or delete candidates or votes. While
there are few situations in which voting rule cannot be ma-
nipulated or controlled, it could be computationally complex
to understand whether a form of manipulation or control is
possible, and how to do it. This may protect the election
against such strategic actions. In this paper we focus on
control actions, and we say that a voting rule is immune to
a type of control if the result cannot be affected by that type
of control, otherwise we say that it is susceptible to that type
of control. If it is susceptible, we say that it is resistant to a
control action if the problem that the chair has to deal with
is NP-hard, otherwise if the problem is in P we say that it
is vulnerable. This line of thought originated by the seminal
work of Bartholdi, Tovey and Trick [1], which was the first
one to consider computational complexity as a shield that
the system can use against control actions.

Control actions can be constructive or destructive, depend-
ing on whether the chair aims at making a certain candidate
win or lose. The forms of control considered here are the
addition or deletion of candidates and/or votes. The com-
putational complexity of these forms of control have been
studied in the literature, with results for several voting rules
[4, 5,3, 2,9]. We will use the usual acronym DC for Destruc-
tive Control, AC (for Adding Candidates), DC (for Deleting
Candidates) as well as their combinations.

3. REPLACEMENT CONTROL

Replacement control can be seen as the combination of the
addition and deletion of either votes or candidates in equal
amount. That is, the chair can replace some candidates. We
use RC for Replacing Candidates. These will be combined
with destructive control (DC). Formally, we will study the
following problem.

Name: DCRC (Destructive Control via Replacing Candi-
dates)

Given: a collection V of votes over C1 U C2 (with C7 and
C> disjoint), a distinguished candidate p € Ci, and
re ZZO

Question (DCRCQC): is there a subset A C C and a subset
D C C4 such that |[A] = |[D| < rand p € (C1\ D) is
not the winner of the election £ = ((C1 \ D) U A, V)?

We write DCY (C, A, V,p,r) to denote an instance of the
problem with Y € {AC, DC, RC}, where C' is a set of candi-
dates. A is another set of candidates and V' is the collection
of votes over C'U A. Moreover, p € C is a distinguished
candidate and r is the budget. Informally, A is the set of
candidates or votes that the chair may add to the election,
while candidates or votes to be deleted comes from C or V.

4. PLURALITY AND VETO RESISTANCE
TO DCRC

For the following result, we use the notion of Insensitive
to Bottom-ranked Candidates (IBC) defined in [7]. A voting
rule is IBC if it elects the same winner after unanimously
adding at the bottom of the profile some candidates. In
other words, we say that a voting rule is IBC if, given a
profile P over a set of alternatives C' = {c1,...,¢m}, and P’
another profile over C'U {¢pm+1} that is obtained by adding
c¢m+1 as the least preferred candidate of every vote in P,
then the winner in P is the same as in P’. This property
allows us to prove the resistance to DCRC of a voting rule,
if it is resistant to DCDC, by adding useless candidates at
the bottom.

THEOREM 1. Every voting rule that is IBC and resistant
to DCAC or DCDC is also resistant to DCRC.

PROOF. From any instance I = DCDC(C,0,V,p,r) we
can define an instance I' = DCRC(C, A,V',p,r), where
|A| = r, and the preferences over C' in V' are the same
as in V, while preferences in V' rank all candidates in A
unanimously at the bottom, all in the same order. We claim
that there exists a solution to I if and only if there exists a
solution to I’. Suppose that there exists a solution D C C
to I. This means that |[D| = r and p is not a winner in
the election £ = (C'\ D,V). Then p is not a winner in the
election ' = ((C\D)UA, V'), thus giving a solution (D, A)
to I'. The addition of candidates A does not change the
winner because of IBC. For the reverse, suppose that there
exists a solution (D, A’) to I'. This means that A" C A and
p is not a winner in the election E' = ((C U A")\ D,V’).
Then, p is not a winner also in the election E = (C'\ D, V"),
since the elimination of A does not influence the winner
by IBC. This gives us a solution D to the instance I. We
can give a similar proof reducing from any instance I =
DCAC(C,A,V,p,r). [

We are now ready to prove that plurality and veto are
resistant to replacing candidates.

THEOREM 2. Plurality is resistant to DCRC.

Proor. It follows from the fact that plurality is resistant
to DCDC [5] and from the application of Theorem 1. []

The situation for veto is the same as for plurality: resis-
tant to the replacement of candidates.

THEOREM 3. Veto is resistant to DCRC.

Proor. We prove the NP-hardness of DCRC by reduc-
tion from the hitting set problem. Let (B, S,r) be an in-
stance of the hitting set problem: B = {b1,...,bn}, 7 <n
and S = {S1,...,Sm} subsets of B. The question is if
there exists a subset B’ C B with |B’| < r such that
B’ contains at least one element from each subset of S.
Given an instance I = (B,S,r), we show how to define
an instance I' = DCRC(C, A,V,p,r) of the DCRC prob-
lem such that I has a solution B’ if and only if I’ has
a solution (D, A’), which means that p loses the election
((C\D)u A", V). In I'; C contains the following candi-
dates: w, p, and dj, for j = 1,...,7. We call D the set
of candidates d;. A = {a1,...,an} is a set of candidates
the chair could use to replace some candidates in C, each
candidate a; € A correspond to an element b; € B.
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Figure 1: Sushi dataset: fraction of profiles (over
1000) with successful DCRC.

The collection V' of votes is as follows:

lvote : D>A>w>p
2 votes for each S; € S p=D>A\S;i=w>S;
2 votes for each b; € B p=D>=w>A\{a:} > a;
2 votes for each d; € D p=w>A»D\{d} > d;

2 votes for each a; € A p=w>D» A\{a;} > a;

We use the notation D to mean the linear order of the
candidates in D, that is, di,...,dr. The same is for A.
Before the replacement the number of vetoes per candidate
are: veto(p) = 1, veto(w) = 2m + 2n, veto(d;) > 2, so p is
the winner of the election (C, V). We claim that a solution
to I exists if and only if there exists a solution to I’. Suppose
that B’ is a solution to I. Then, in I’, we add the candidates
A corresponding to the elements in B’ and we delete the
candidates in D. This gets the following number of vetoes
per candidate: veto(p) = 1, veto(w) = 0, veto(a;) > 4, so p
loses the election. On the other hand, suppose p loses the
election by replacing at most r candidates and there exists a
solution (D, A) to I'. None of the candidates added/deleted
changes the vetoes for p, because of the structure of the
profile, while the number of vetoes of w is decreased: for
each candidate a; € A added to the election, the number of
vetoes of w decreases by 2 if b; € S; and no previously added
candidate corresponded to another b; € S;. Let us consider
the set B’ of all b; corresponding to added candidates a;.
We have that |B’| < r and contains at least one element
from each subset of S. Thus it is a hitting set and therefore
B’ is a solution to I. The candidate w is the only one which
can dethrone p and this is possible if in the second group of
voters there is always at least 1 candidate ranked lower than
w. This again is only possible if there is a hitting set. [

S. EMPIRICAL EVALUATION

To understand better the theoretical results showing the
hardness of the DCRC control problem, we performed an
empirical evaluation on real-world datasets. Besides plural-
ity and veto, in this experimental analysis we also consider
k-approval for values of k that are different from 1 and m—1.
We also compare DCRC with single control actions which
just add or delete candidates (DCAC and DCDC).

We consider profiles coming from real world data sets. In
particular, we use three datasets from the prelib repository
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Figure 2: T-shirt dataset: percentage of profiles
(over 1000) with successful DCRC.

(www.preflib.org) [8]:

e the AGH Course Selection ED00009, which contains
the preferences of some university students over a set
of courses [10];

e the T-Shirt ED00012 dataset, which contains the pref-
erences of some NICTA employees over some tshirt
templates;

e the sushi dataset ED00014, which contains the prefer-
ences of 5000 people on various kinds of sushi [6].

For each data set, we generate profiles of 1000 votes by
randomly selecting preference rankings from the dataset.
We also assume that r = |A|.

The first thing we show is the percentage of profiles where
DCRC is able to change the winner. Figure 1 reports the
test run using the sushi data set, with 10 voters, |C| = 5 and
2 < |A] < 5. The x axis has the value of k in k-approval,
which varies from 1 to 4. The four curves correspond to
different sizes of set A. Clearly, the larger k and A, the
more controllable the profile is, because there could be more
harmful combinations of candidate replacements. The same
behaviour can be observed in figure 2 that reports the test
run using the t-shirt data set, with 25 voters, |C| = 5 and
2 < |A] < 5. The x axis has the value of k in k-approval,
which varies from 1 to 4. Even if the data is different we
can observe the same trend in both chart: while veto seems
to be controllable most of the times, plurality shows some
resistance to it.

We then consider the actual difficulty for changing the
winner, or for discovering that it cannot be changed, by
considering a deterministic algorithm that checks all possi-
ble combinations of candidates to be added, and an equal
number of candidates to be deleted, starting from combina-
tions with budget (number of replacements) 1 and going up
to the maximum size. A lexicographic ordering over can-
didates is used to decide which delete/add combinations to
try first with the same budget size.

Figure 3 shows the average percentage of combinations
tested, over all possible add/delete combinations, when us-
ing 1000 profiles from the sushi dataset, with 10 voters,
|C| = 5 and 2 < |A] < 5. The x axis has the value of
k in k-approval, which varies from 1 to 4. Figure 4 shows
the same information but against the t-shirt dataset with 25
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Figure 3: Deterministic algorithm on sushi dataset:
Average percentage of tried add/delete combina-
tions.
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Figure 4: Deterministic algorithm on T-shirt
dataset: Average percentage of tried add/delete
combinations.

votes. We are interested in the main trend of these charts
and not in the small differences that they can report, be-
cause these small differences are connected to the structure
of the preferences in the dataset. What is really interesting
is once again that the larger are k and |A|, the smaller is the
computational effort of this algorithm.

We also considered a non-deterministic algorithm which
the chair of the election could use to change the winner by
replacing candidates. Such an algorithm consists of picking
an add/delete combination randomly (over all possible com-
binations), and checking whether the winner changes. From
the experimental data, we count the percentage of profiles
where the winner changes (see Fig. 1) and we use this as the
probability of success of this approach. If p is the probability
that picking one profile is enough to change the winner, it is
easy to see that 1/p is the expected number of profiles to be
picked up before changing the winner. We therefore show
this 1/p number as a measure of how many combinations
should be tested by this non-deterministic algorithm before
changing the result (or discovering that it cannot change).

Figure 5 compares the difficulty of the DCRC problem as
measured in Fig.2 to this measure of the difficult of DCRC
via the non-deterministic algorithm. We used the sushi
dataset, with 10 voters, |C| = 7 and |A| = 3. The x axis
has the value of k in k-approval, which varies from 1 to 6,
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Figure 5: Deterministic and non-deterministic algo-
rithm on sushi dataset: comparison.
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Figure 6: Deterministic and non-deterministic algo-
rithm on t-shirt dataset: comparison.

while the y axis shows the percentage of add/delete combi-
nations that the algorithm tries before stopping. Figure 6
shows the data collected using the t-shirt data set, with 25
voters, |C| = 7 and |A| = 3. It can be seen that the non-
deterministic algorithm appears to be more efficient, since
it always needs to try a smaller number of combinations.

We also compared the power of replacing candidates with
respect to just adding or deleting candidates. We consider
the profiles where the winner changes using RC, and we
count in how many of these profiles

e the winner changes using AC but does not change us-
ing DC (denoted by ”AC only”);

e the winner changes using DC but does not change us-
ing AC (denoted by "DC only”);

e the winner changes using either DC or AC (denoted
by ”AC only and DC only”);

e the winner changes only using RC (denoted by "RC
only”).

Notice that "AC only” and "DC only” do not add up to "AC
only and DC only” because all these categories represent
disjoint sets of profiles.

Figure 7 shows the percentage of profiles where the winner
changes using RC on the sushi dataset. We use a stacked



bar histogram that report the percentage of profiles where
the winner change using RC only, AC only, DC only, or AC
only and DC only, for plurality and veto. We used the sushi
dataset, with 10 voters, |C| = 5 and |A]| varies over the z
axis from 1 to 4.
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Figure 7: Deterministic algorithm on sushi dataset:
RC compared to AC, DC, and AC+DC.

1
09
8os8
B o7
s
506
2
505
04
8
203
202
01
- e B == N O O ==

Plurality ~Veto Plurality Veto Plurality Veto Plurality Veto

2 3 4 5
cardinality of A

MRC mAC mDC mACDC

Figure 8: Deterministic algorithm on t-shirt dataset:
RC compared to AC, DC, and AC+DC.

The number of profiles where the winner changes using AC
but does not change using replacement control is on average
0.3%. Thus, it can be seen that RC improves the vulner-
ability of the voting rule since the number of controllable
profiles increases by about 9%, this is a significant increase
in controllability compared to AC or DC alone that is not
reported in this chart and which is around 0.3%, thus mak-
ing the voting rule much more vulnerable to this kind of
control action.

Figure 8 shows data about the same experiment but using
the t-shirt dataset. What is interesting in this chart is that
the structure of the preferences made veto almost resistant
to AC only but the voting rule shows the same trend about
the vulnerability to RC. Once again RC improves the vul-
nerability of the voting rule since the number of controllable
profiles increases by about 7%, this is a significant increase
in controllability compared to AC or DC alone that is not
reported in this chart and which is around 0.2%, thus mak-
ing the voting rule much more vulnerable to this kind of
control action.

Furthermore, we do not report the data collected using
the AGH course selection dataset, because they show the
same trends as the ones of the other datasets.

6. CONCLUSIONS

We have studied the computational complexity of replace-
ment control, where the chair tries to influence an election
by replacing candidates or votes. In particular, in this pa-
per we focused on destructive control via replacing voters,
showing that this problem is NP-complete in both plurality
and veto.

We also performed an extensive experimental work, using
real-world data sets, to test if k-approval is really difficult
in practice to control via replacing candidates. Our experi-
ments show that plurality is more resistant to DCRC than
other versions of k-approval. Also, a non-deterministic al-
gorithm seems to be the most convenient for the chair to
control the election. Finally, RC is significantly more pow-
erful than just AC or DC alone in terms of giving the chair
control over the election.
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