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ABSTRACT
The fair division of indivisible goods has long been an important
topic in economics and, more recently, computer science. We in-
vestigate the existence of envy-free allocations of indivisible goods,
that is, allocations where each player values her own allocated set
of goods at least as highly as any other player’s allocated set of
goods. Under additive valuations, we show that even when the num-
ber of goods is larger than the number of agents by a linear frac-
tion, envy-free allocations are unlikely to exist. We then show that
when the number of goods is larger by a logarithmic factor, such
allocations exist with high probability. We support these results ex-
perimentally and show that the asymptotic behavior of the theory
holds even when the number of goods and agents is quite small.
We demonstrate that there is a sharp phase transition from nonexis-
tence to existence of envy-free allocations, and that on average the
computational problem is hardest at that transition.

1. INTRODUCTION
The allocation of goods to interested agents is a central tenet

of society. Some goods, like land, are divisible: a mechanism can
split a single good amongst multiple agents. Others, like the house
or cars in an estate sale or divorce proceedings, are indivisible: a
mechanism must allocate each good to exactly one agent. A chief
concern in the assignment of divisible and indivisible goods to
agents—and in the employment of divorce lawyers—concerns defin-
ing and guaranteeing the fairness of the final allocation.

One formal notion of fairness is envy-freeness. An allocation of
goods is envy free (EF) if each player values her own allocated set
of goods at least as highly as any other player’s allocated set of
goods. While EF divisions exist for any number of players in the
divisible goods case (see, e.g., [14], and the references therein), it
is not guaranteed that such fair allocations exist when indivisible
goods are considered. Indeed, consider the simple case of a single
good and two agents, both of which have positive value for the
good. Allocating the good to either agent will result in envy from
its empty-handed partner.

In this paper, we investigate the conditions under which EF al-
locations of indivisible goods exist, when agents’ values of goods
are drawn at random. Under additive valuations and rather general
conditions on the distributions over values of individual goods, we
characterize conditions for nonexistence, showing that even when
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the number of goods is larger than the number of agents by a lin-
ear fraction, an EF allocation is unlikely to exist (Theorem 1). We
then show that when the number of goods is larger by a logarithmic
factor than the number of agents, an EF allocation exists with high
probability (Theorem 2). Thus, these asymptotic existence results
are almost tight.

We support our theoretical results, which apply asymptotically,
with an empirical exploration of the EF allocation problem on dif-
ferent distributions over valuations and different objectives over EF
allocations using two integer programming models. The theory ap-
plies to each of these experiments even when the number of agents
and goods is quite small. We also uncover a phenomenon common
to many problems in artificial intelligence: that the hardest compu-
tational EF allocation problems on average occur during the (sharp)
transition from nonexistence to existence.

1.1 Related Work
Fair division has long occupied an important place in AI re-

search [6]. Among the many AI papers that study the EF allocation
of indivisible goods, the work of Bouveret and Lang [2] is of partic-
ular interest. They showed that determining the existence of an EF
allocation is computationally hard. In contrast, we focus on typical
instances, and show that EF allocations exist, or do not exist, with
high probability.

Similarly, the phase transition phenomenon is a staple of AI re-
search [5, 9]. In a nutshell, constraint satisfaction problems (CSPs)
typically have the curious property that as the problem becomes
more constrained, the probability of the existence of a feasible so-
lution sharply drops from 1 to 0. Around the same point where this
phase transition occurs (known as the critical value of the order
parameter), search algorithms experience a sharp spike in running
time—a steep computational rise, then an equally steep fall as the
problem becomes more constrained (so ruling out the existence of
a solution becomes easier). We show that a similar phenomenon
occurs in the context of the existence and computation of EF allo-
cations.

The problem of coalitional manipulation in elections is another
popular topic in computational social choice that has run the gaunt-
let from (i) worst-case complexity [8], through (ii) probabilistic ex-
istence and nonexistence results [7, 15, 18], to (iii) investigations
of the phase transition at the threshold between nonexistence and
existence [17, 13]. From the technical and conceptual viewpoints,
though, our problem is completely different. Note that we tackle
(ii) and (iii) simultaneously, and for the first time (in the context of
fair division).

Brams, Kilgour, and Klamler [4] design a mechanism for the EF
allocation of indivisible goods, which also satisfies other desirable
properties. While their scheme guarantees envy-freeness, it may not
allocate all the goods. To ameliorate this shortcoming, they show



that when the (ordinal) preferences of agents over goods are drawn
uniformly at random, their scheme will allocate all goods with high
probability, as the number of goods goes to infinity. Our existence
result, Theorem 2, is significantly stronger in several ways: (i) it
gives an exact relation between the number of agents and number
of goods, instead of assuming that one is constant and the other
goes to infinity, (ii) it holds under far milder assumptions on the
probability distribution over instances, and (iii) it relies on an intu-
itively desirable allocation mechanism that gives each good to the
agent that wants it the most, thereby maximizing social welfare (as
we discuss below). Brams and Fishburn [3] also work in a proba-
bilistic model, but with only two agents; our results hold for any
number of agents.

2. OUR MODEL
Denote the set of agents by N = {1, . . . , n}, and the set of

goods by G, where |G| = m. Agent i has utility ui(g) ∈ [0, 1] for
good g; note that constraining the utilities to an interval is without
loss of generality. We make the very common assumption that util-
ities are additive, that is, for a subset of goods G′ ⊆ G and agent
i ∈ N , it holds that ui(G′) =

∑
g∈G′ ui(g).

An allocation is a partition A = (A1, . . . , An) of the goods,
where Ai is the bundle of goods allocated to agent i ∈ N . The
allocation A is said to be envy free (EF) if and only if for any two
agents i, j ∈ N , ui(Ai) ≥ ui(Aj), that is, each agent weakly
prefers its own bundle to the bundle allocated to any other agent.

2.1 Distributions Over Utilities
For every agent i and good g ∈ G, the utilities u1(g), . . . , un(g)

are drawn from a joint, non-atomic distribution Dn over [0, 1]n,
that is, for every x ∈ [0, 1], Pr[ui(g) = x] = 0. Let us state two
assumptions on Dn, which hold for every g ∈ G; Theorem 1 will
require the first, and Theorem 2 will require the second:

[A1] For all i, j ∈ N such that i 6= j, ui(g) and uj(g) are inde-
pendent and identically distributed.

[A2] For all i, j ∈ N ,

Pr[arg max
k∈N

uk(g) = {i}] = 1/n,

and there exist constants µ, µ∗ such that

0 < E[ui(g) | arg max
k∈N

uk(g) = {j}] ≤ µ

< µ∗ ≤ E[ui(g) | arg max
k∈N

uk(g) = {i}].

Let us illustrate these assumptions using two natural distributions
that will be featured in our empirical results:

• UNIFORM(x, y): For each agent i ∈ N and good g ∈ G,
draw ui(g) ∼ U [x, y], where U is the uniform distribution.

• CORRELATED(x, y): Independently assign each good g an
intrinsic base value µg ∼ U [x, y]. Then, for each agent i,
draw ui(g) ∼ N (µg, σg), where N is the (truncated) nor-
mal distribution and σg ∝ µg .

First, consider UNIFORM. Clearly it satisfies [A1]. Assumption
[A2] seems technical, but is actually quite mild. To be concrete,
take UNIFORM(0, 1), so the utilities are drawn uniformly at ran-
dom in [0, 1]. The first part of [A2] holds due to symmetry. More-
over, in this case, E[ui(g)] = 1

2
, and E[maxk∈N uk(g)] = n

n+1
≥

2
3

(see, e.g., [1, Corollary 4.5]). Clearly

E[ui(g) | arg max
k∈N

uk(g) = {j}] ≤ E[ui(g)],

and due to symmetry

E[ui(g) | arg max
k∈N

uk(g) = {i}] = E[max
k∈N

uk(g)],

so we can set µ∗ = 2/3 and µ = 1/2. Assumption [A2] still holds
if the utilities are drawn from an interval [x, y] ⊆ [0, 1] (by scaling
and shifting µ and µ∗).

Similarly, CORRELATED(x, x) satisfies both assumptions for any
x ∈ (0, 1)—utilities are simply drawn i.i.d. from the same normal
distribution. But when x < y, CORRELATED(x, y) only satisfies
assumption [A2]. This distribution does not satisfy [A1], because
for a fixed g ∈ G, ui(g) and uj(g) are not independent.

3. A SMALL NUMBER OF GOODS
If there are fewer goods than agents, i.e., m < n, then clearly

no EF allocation is possible—there will be an agent with no goods.
Conceivably, though, it could be that if m is slightly larger than
n—say, m = n +

√
n—then an EF allocation is likely to exist. In

this section we show that this is not the case: the number of “extra”
goods must be linear in n.

Recall that our distributions over utilities are non-atomic. There-
fore, for i ∈ N and two goods g 6= g′, Pr[ui(g) = ui(g

′)] = 0.
So, we can safely assume that each agent has a unique favorite
good, and define a function f : N → G that maps each agent
to its favorite good, that is, f(i) = argmaxg∈Gui(g).

We are now ready to state our first result.

THEOREM 1. Assume that [A1] holds. Let δ ∈
(

0, 1
2
− 1

2
√
e

)
be a constant. If the probability that there exists an EF allocation is
at least 1− δ then m ≥ (1 + c(δ))n, where c(δ) > 0 is a constant
that depends only on δ.

We require the following lemma, which gives a necessary condi-
tion for envy-freeness that depends on the number of collisions of
the function f .

LEMMA 1. Let u1, . . . , un be utility functions for the n agents
such that ui(g) 6= ui(g

′) for all g 6= g′. For each good g, let
Xg = f−1(g) be the set of agents whose favorite good is g. If
there is an EF allocation thenm ≥ n+

∑
g∈G max{|Xg|−1, 0}.

PROOF OF LEMMA 1. Fix an allocation A, and let i ∈ N such
that g ∈ Ai. In order to avoid envying i, every agent in Xg \ {i}
must receive at least two goods. Hence,

m ≥
∑

g∈G: |Xg|>0

(2|Xg| − 1)

=
∑

g∈G: |Xg|>0

|Xg|+
∑

g∈G: |Xg|>0

(|Xg| − 1)

=
∑
g∈G

|Xg|+
∑
g∈G

max{|Xg| − 1, 0}

= n+
∑
g∈G

max{|Xg| − 1, 0}.

PROOF OF THEOREM 1. LetC be a random variable that counts
the number of collisions between agents’ top preferences. Specifi-
cally, the value ofC is determined as follows. Starting fromC = 0,
for each i = 1, . . . , n, if there exists j < i such that f(i) = f(j)
then increment C by 1. Using the notations of Lemma 1, it is easy
to see that C =

∑
g∈G max{|Xg| − 1, 0}.



Our first goal is to compute E[C]. Let Yij be a Bernoulli random
variable that takes the value 1 if f(i) = f(j), and 0 otherwise.
Then for all i 6= j, Pr[Yij = 1] = 1/m, due to assumption [A1].

Let Zi be another Bernoulli random variable that takes the value
1 if f(i) = f(j) for some j < i, and 0 otherwise. Zi = 1 if and
only if there exists j < i such that Yij = 1. Furthermore, for a
fixed i the variables Yij are independent due to assumption [A1].
Therefore

E[Zi] = 1−
(

1− 1

m

)i−1

.

Now we can simply write C =
∑
i∈N Zi. Using the linearity of

expectation:

E[C] = E

[∑
i∈N

Zi

]
=

n∑
i=1

(
1−

(
1− 1

m

)i−1
)

≥
n∑
i=1

(
1− e−

i−1
m

)
≥

n∑
i=n

2
+1

(
1− e−

i−1
m

)
≥ n

2

(
1− e−

n
2m

)
,

where the third transition follows from the well-known fact that
(1−x) ≤ e−x for all x ∈ R, and the fourth transition assumes that
n is even purely for ease of exposition.

Now, suppose that C ≤ k with probability 1− δ. Also using the
fact that C ≤ n, we get

(1− δ)k + δn ≥ E[C] ≥ n

2

(
1− e−

n
2m

)
,

and therefore

k ≥ n

1− δ

(
1− e−

n
2m

2
− δ
)
. (1)

We want k to be lower-bounded by a constant fraction of n, which
is true if and only if e−

n
2m < 1 − 2δ. Denoting m = αn, we can

write e−
1
2α < 1 − 2δ; equivalently, − 1

2α
< ln(1 − 2δ), and by

rearranging we get

α <
1

2 ln
(

1
1−2δ

) . (2)

Using our assumption that δ < 1
2
− 1

2
√
e

, we see that the right hand
side of Equation (2) is a constant greater than 1. Let us therefore
set

β(δ) =

1 + 1

2 ln( 1
1−2δ )

2
,

then β is a constant greater than 1 that depends only on δ.
We now have all the ingredients in place to complete the theo-

rem’s proof. On the one hand, if m > β(δ)n then we are done. On
the other hand, ifm ≤ β(δ)n then Equation (1) gives us a constant
lower bound on k that depends only on δ, say γ(δ)n, which was
derived under the assumption that Pr[C ≤ k] ≥ 1 − δ. Next, set
γ′(δ) = γ(δ)/2. So, if it holds that γ′(δ)n ≤ k < γ(δ)n, i.e.,
k is a constant fraction of n that is strictly smaller than the lower
bound, then the assumption does not hold, i.e., Pr[C ≥ k] > δ.

By Lemma 1, in those cases where C ≥ k, there is an EF alloca-
tion only if the number of goods is at least n+k ≥ n(1+γ′(δ)). In
other words, ifm < n(1+γ′(δ)), an EF allocation would not exist
with probability 1− δ for the preceding choices of parameters. We
conclude that it must be the case thatm ≥ min{β(δ), 1+γ′(δ)}·n.
Setting c(δ) = min{β(δ)− 1, γ′(δ)} completes the proof.

4. A LARGE NUMBER OF GOODS
Next, we examine the case where the number of goods is signif-

icantly larger than the number of agents—by a logarithmic factor,
to by precise. In this case, an EF allocation exists with high proba-
bility.

THEOREM 2. Assume that [A2] holds. Let n = O
(
m

lnm

)
. Then

an EF allocation exists with probability 1 as m→∞.

Before proving the theorem, two comments are in order. First,
why are we writing n = O

(
m

lnm

)
instead of the more intuitive

m = Ω(n lnn)? The reason is that we want to emphasize that only
the number of goods has to go to infinity; the number of agents can
stay small, even constant. The theorem holds even if the number
of agents goes to infinity, as long as this happens at most at the
specified rate compared to the number of goods.

Second, Theorem 2 states that there exists an EF allocation, but
the proof shows something stronger: that this allocation can be ob-
tained by giving each good to the agent that values it the most, i.e.,
to arg maxi∈N ui(g). This is, in fact, the allocation that maximizes
the (utilitarian) social welfare, which is the sum of utilities. So, an
alternative formulation is that, under the theorem’s condition, the
social-welfare-maximizing allocation is EF with high probability.

Turning to the theorem’s proof, we require the following well-
known result.

LEMMA 2 (CHERNOFF). LetX1, . . . , Xm be independent ran-
dom variables in [0, 1]. Denote X =

∑m
i=1X

i. Then for all ε ∈
[0, 1],

1. Pr[X ≥ (1 + ε)E[X]] ≤ exp
(
− ε

2

3
E[X]

)
.

2. Pr[X ≤ (1− ε)E[X]] ≤ exp
(
− ε

2

2
E[X]

)
.

PROOF OF THEOREM 2. We explicitly construct an allocation
by giving each good g ∈ G to the agent that likes it most, that
is, to arg maxi∈N ui(g). This “algorithm” induces an allocation
A = (A1, . . . , An), where each Ai can be formally thought of
as a random variable that takes values in 2G. We prove that the
allocation A is EF with high probability.

Let Xg
i be a random variable that takes the value ui(g) if {i} =

arg maxk∈N uk(g), and 0 otherwise. It holds that

ui(Ai) =
∑
g∈G

Xg
i ;

we will use this observation to calculate E[ui(Ai)]. Using [A2]
(twice), for all i ∈ N and g ∈ G it holds that

E[Xg
i ]

= Pr

[
{i} = arg max

k∈N
uk(g)

]
· E
[
ui(g)

∣∣∣∣{i} = arg max
k∈N

uk(g)

]
=

1

n
· E
[
ui(g)

∣∣∣∣ {i} = arg max
k∈N

uk(g)

]
≥ µ∗

n
.

Therefore, using the linearity of expectation,

E[ui(Ai)] =
∑
g∈G

E[Xg
i ] ≥ µ∗m

n
.

Next, for all i 6= j and g ∈ G let Y gij be random variables that
take the value ui(g) if {j} = arg maxk∈N uk(g), and 0 otherwise.
It holds that ui(Aj) =

∑
g∈G Y

g
ij . Furthermore

E[Y gij ] =
1

n
· E
[
ui(g)

∣∣∣∣ {j} = arg max
k∈N

uk(g)

]
≤ µ

n
,



by assumption [A2]. However, a technicality is that our assump-
tions do not provide a lower bound for

E
[
ui(g)

∣∣∣∣ {j} = arg max
k∈N

uk(g)

]
(which is required to use Lemma 2). We therefore define variables
Zgij such that E[Zgij ] = µ/n, Zgij ∈ [0, 1], and Zgij stochasti-
cally dominates Y gij . In particular, E[

∑
g∈G Z

g
ij ] = µm

n
, and due

to stochastic dominance, for all x ∈ R+,

Pr

[∑
g∈G

Zgij ≥ x

]
≥ Pr

[∑
g∈G

Y gij ≥ x

]
.

We can therefore use the Zgij variables to reason about ui(Aj).
Let Eij be the event that agent i envies agent j. For Eij to hap-

pen, it must be the case that
∑
g∈G Y

g
ij >

∑
g∈GX

g
i , which hap-

pens only if∑
g∈G

Xg
i ≤ µ

∗m

n
− µ∗ − µ

2

m

n
=

(
1− µ∗ − µ

2µ∗

)
µ∗
m

n

=

(
1− µ∗ − µ

2µ∗

)
E

[∑
g∈G

Xg
i

]
,

or ∑
g∈G

Y gij ≥ µ
∗m

n
− µ∗ − µ

2

m

n
= µ

m

n
+
µ∗ − µ

2

m

n

=

(
1 +

µ∗ − µ
2µ

)
µ
m

n

=

(
1 +

µ∗ − µ
2µ

)
E

[∑
g∈G

Zgij

]
,

Let us set

ε = min

{
1,
µ∗ − µ

2µ∗

}
.

Because µ < µ∗, it also holds that ε ≤ µ∗−µ
2µ

.

The variables Xg
i and Xg′

i are independent for g 6= g′, and sim-
ilarly Zgij and Zg

′

ij are independent. Using Lemma 2, we have that

Pr

[∑
g∈G

Xg
i ≤ (1− ε)E

[∑
g∈G

Xg
i

]]
≤ exp

(
− ε

2

2
µ∗
m

n

)
,

and

Pr

[∑
g∈G

Y gij ≥ (1 + ε)E

[∑
g∈G

Zij

]]

≤ Pr

[∑
g∈G

Zgij ≥ (1 + ε)E

[∑
g∈G

Zij

]]
≤ exp

(
− ε

2

3
µ
m

n

)
,

Setting

n ≤ ε2µ

3
· m

ln(2m3)

and using the union bound, we conclude that

Pr[Eij ] ≤ exp

(
− ε

2

2
µ∗
m

n

)
+ exp

(
− ε

2

3
µ
m

n

)
≤ 2 · 1

2m3
=

1

m3
.

(3)

The allocation A is EF if and only if Eij does not occur for all
i 6= j. Using Equation (3) and the union bound over

(
n
2

)
pairs of

agents, the probability that A is not EF is at most

Pr

∨
i 6=j

Eij

 ≤∑
i6=j

Pr[Eij ] ≤

(
n

2

)
1

m3
≤ 1

m
.

Thus, the probability thatA is not EF goes to zero asm grows.

5. IN BETWEEN: A PHASE TRANSITION
In this section, we support our theoretical results with an em-

pirical exploration of the transition from nonexistence to existence
of envy-free allocations as a function of the number of goods and
agents. We find that the most difficult allocation problems occur
during the sharp phase transition from nonexistence and existence.
We show that this behavior, which is common to many discrete
feasibility problems, holds under both of two natural optimization
models (one with and one without an objective function) and under
different distributions over agents’ utility values.

5.1 Experimental Setup
We generate instances with n agents and m goods as follows

by sampling valuations for each agent and each good from a given
distribution over utility functions. In our experimental setup, we
draw from two distributions—CORRELATED(0.4, 0.6) and UNI-
FORM(0, 1)—defined earlier. Intuitively, the UNIFORM distribu-
tion randomly assigns a value to each good for each agent, while
the CORRELATED distribution first draws an intrinsic value for each
good, then assigns a random value to each agent drawn from a
(truncated nonnegative normal) distribution around that intrinsic
value. UNIFORM satisfies both distributional assumptions and thus
aligns with both Theorems 1 and 2, while our instantiation of COR-
RELATED only satisfies assumption [A2], or the assumptions needed
for Theorem 2. Still, we will show that both theoretical results hold
experimentally for both distributions, even when the number of
agents and goods is quite small.

Given an instance as generated above, we search for an envy-free
allocation using one of two mixed integer programs (MIPs). Both
formulations use n×m binary variables xig that are activated if and
only if agent i is allocated good g. Model #1, a feasibility problem,
is defined as follows:

find xig ∀i ∈ N, g ∈ G
s.t.

∑
i∈N xig = 1 ∀g ∈ G∑
g∈G vigxi′g −

∑
g∈G vigxig ≤ 0 ∀i 6= i′ ∈ N

xig ∈ {0, 1} ∀i ∈ N, g ∈ G

Intuitively, the first set of constraints ensures that each good is
allocated to exactly one agent, while the second set of constraints
ensures that each agent values its allocation at least as highly as
any other agent’s allocation. For this feasibility problem, no explicit
objective function is necessary; indeed, the feasible region defined
by the constraints is exactly the space of all envy-free allocations.

We now define Model #2, an optimization version of the envy-
free allocation problem, as follows:

min e
s.t.

∑
i∈N xig = 1 ∀g ∈ G∑
g∈G vigxi′g −

∑
g∈G vigxig ≤ e ∀i 6= i′ ∈ N

xig ∈ {0, 1} ∀i ∈ N, g ∈ G
e ∈ Rnonneg

This second MIP model minimizes a real-valued non-negative
variable e representing the maximum envy between any two agents;



thus, an EF allocation exists if and only if the objective value is
zero at the optimum. This is an integer programming-based imple-
mentation of the envy minimization problem described by Lipton
et al. [11].

Model #1 may seem like the more general model since it is
amenable to the addition of various objective functions. For exam-
ple, adding an objective function that maximizes∑

i∈N

∑
g∈G

vigxig

would produce an envy-free allocation that also maximizes social
welfare. It is not obvious how to adapt Model #2 to include arbi-
trary objective functions. Still, there is some evidence that relaxing
the feasible region and then re-casting the feasibility problem as
an optimization problem may result in better runtime performance.
For example, Sandholm, Gilpin, and Conitzer [16] saw speedups
using an optimization model instead of a feasibility model in spe-
cific problem classes when exploring various MIP models for find-
ing Nash equilibria in two-player games (although they did not see
an overall speedup). We compare the performance of both models
in the coming section.

All experiments were performed in Python using IBM ILOG
CPLEX 12.61 in single-threaded mode under its default configura-
tion. Runs were conducted on Blacklight,2 a ccNUMA supercom-
puter with 8GB of RAM per core; each experiment was run at least
160 times with a time limit of 12 hours per run. For solve time
comparison, runs that timed out were conservatively considered to
have completed in 12 hours. When timeouts were ignored or pe-
nalized heavily (e.g., counted as a 10 × 12 = 120 hour run), our
experiments exhibited the same qualitative behavior.

5.2 Phase Transitions
We now explore the existence of phase transitions in various in-

stantiations of the envy-free allocation problem.
Figure 1 shows an example phase transition for the existence of,

and hardness of finding, an envy-free allocation in a problem with
n = 10 agents valuing m ∈ {10, . . . , 30} goods. Results are pre-
sented for both the UNIFORM and CORRELATED distributions over
utility functions using Model #1 without and with a social welfare
maximizing objective function. The thick red line (corresponding
to the left y-axis) plots the fraction of instances with m goods and
n agents such that an envy-free allocation existed.

Aligning with Theorem 1, Figure 1 shows that the probability
of an EF allocation existing is small when the number of goods is
not much larger than the number of agents. Similarly, aligning with
Theorem 2, when the number of goods is more (but not necessarily
substantially more), the probability of an EF allocation existing is
essentially one. Figure 2 explores this transition quantitatively for
increasing numbers of agents n by plotting the minimum value m
where at least 99% of the generated instances were feasible. Fit-
ting an m/ ln(m) function for either UNIFORM or CORRELATED
shows that the asymptotically-stated Theorem 2 holds even when
the number of goods and agents is quite small.

Figure 1 also plots runtime as a function of the number of goods
m. The thick dashed line (corresponding to the right y-axis) plots
the average runtime to either prove the nonexistence of a solution or
find and prove the optimality of a feasible solution. The two dotted
lines (also corresponding to the right y-axis) plot the average run-
times for only the feasible and infeasible instances, respectively.

1ibm.com/software/commerce/optimization/
cplex-optimizer/
2blacklight.psc.edu
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Figure 1: Phase transition for n = 10 under either UNIFORM
or CORRELATED, with or without maximizing social welfare.
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Figure 2: The minimum value of m where at least 99% of the
instances were feasible as n increases.

We see a classical “hardness bump” around the phase transition,
with average solution time being much higher when the probability
of a feasible instance is small but not trivial. Here, proving infeasi-
bility takes significant computational effort.

Figure 3 shows that this hardness behavior is not just an arti-
fact of the feasibility Model #1; indeed, the optimization problem
defined by Model #2 exhibits an even more stark hardness bump
around the phase transition. This roughly aligns with the experi-
ences of Sandholm, Gilpin, and Conitzer [16], who found that re-
laxing the feasible region while moving some constraints into the
objective did not result in an overall speedup.

6. DISCUSSION & FUTURE RESEARCH
In this paper, we theoretically and empirically investigated the

existence of envy-free allocations of indivisible goods. Under ad-
ditive valuations and general assumptions on the distributions over
values of individual goods, we theoretically characterized the con-
ditions for nonexistence and existence of envy-free allocations. We
supported these asymptotic results with experiments on two value
distributions using two MIP models and found, empirically, that
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Figure 3: Runtime comparison of Model #1 (feasibility) and
Model #2 (optimization) for n = 6 and n = 10 agents.

the theoretical conditions for (non)existence of envy-free alloca-
tions apply even when the number of agents and goods is quite
small. Furthermore, we discovered that the hardest computational
problems in this space on average exist during the phase transition
between nonexistence and existence.

In typical phase transition work, what is increased on the “x-
axis" is the number of constraints while keeping the number of
variables constant. Our phase transition is, in that sense, different
because as we increase the number of goods (while keeping the
number of agents fixed), both the number of variables and con-
straints increases. Our phase transition is nevertheless similar to
prior ones in that (i) there is a sharp transition from infeasibility to
feasibility, (ii) the complexity peak occurs at that transition, (iii) the
complexity peak is driven mainly by infeasible instances, and (iv)
the infeasible instances get harder—and rarer—as we move to the
side of the phase transition where instances are typically feasible.

While the theoretical results we presented are essentially tight,
it would be useful to completely characterize the phase transition
between nonexistence and existence of an envy-free allocation. We
showed experimentally that this phase transition is quite sharp, but
either proving that the logarithmic factor in Theorem 2 is neces-
sary or further whittling down this bound toward Theorem 1 would
be helpful. Results of this nature are actively being pursued with
random 3-SAT problems [10, 12]. Furthermore, relaxing the distri-
butional assumptions (especially on Theorem 1) would, if possible,
be useful toward this end.

Along the lines of enhanced MIP techniques, it would be inter-
esting to try to “flatten the hardness bump” we saw in the exper-
iments through the use of custom branching and fathoming rules,
variable prioritization schemes, and other heuristics that maintain
search completeness.
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