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ABSTRACT
Positional scoring rules in voting compute the score of an alter-
native by summing the scores for the alternative induced by every
vote. This summation principle ensures that all votes contribute
equally to the score of an alternative. We relax this assumption and,
instead, aggregate scores by taking into account the rank of a score
in the ordered list of scores obtained from the votes. This defines
a new family of voting rules, rank-dependent scoring rules (RD-
SRs), based on ordered weighted average (OWA) operators, which
include scoring rules, plurality, k-approval, and Olympic averages.
We study some properties of these rules, and show, empirically,
that certain RDSRs are less manipulable than Borda voting, across
a variety of statistical cultures.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sciences—
Economics; I.2.11 [Distributed Artificial Intelligence]: Multia-
gent Systems

General Terms
Algorithms, Economics, Theory

Keywords
Computational Social Choice, Voting, Order Weighted Averages

1. INTRODUCTION
Voting rules aim at aggregating the ordinal preferences of a set

of individuals in order to produce a commonly chosen alternative.
Many voting rules are defined in the following way: given a vot-
ing profile P, a collection of votes, where a vote is a linear rank-
ing over alternatives, and some alternative x, each vote contributes
to the score of an alternative. The global score of the alternative
is then computed by summing up all these contributed (“local”)
scores, and finally, the alternative(s) with the highest score win(s).
The most common subclass of these scoring rules is that of po-
sitional scoring rules: the local score of x with respect to vote v
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depends only on the rank of x in v, and the global score of x is the
sum, over all votes, of its local scores. Among prominent scoring
rules we find the Borda rule as well as plurality, antiplurality and
k-approval. However, there are occasionally undesirable features
of scoring rules.

EXAMPLE 1. Four travelers have been asked to try six restau-
rants and to rank them for TripAdvisor.com. The resulting pro-
file is P= 〈acbde f ,bcade f ,dcaeb f ,ebad f c〉, where�1= 〈acbde f 〉
means that the voter’s preferred alternative is a, followed by c etc.
The organizers of the competition feel that the highest and low-
est ranks given to each candidate should count less than median
scores. Therefore, they feel that c should win, followed by b, fol-
lowed by a, then d, then by e, and finally by f . Neither Borda
(which would elect a), nor k-approval for any k, gives this exact
ranking.

However, if we first compute the four local Borda scores of the
six candidates disregarding the two most extreme scores for each,
then we get the desired ranking. More generally, we can weight
the scores according to their ranks in the ordered list of scores;
for instance, the two extreme scores may have a weight 1/6 each
while the middle scores would have a weight 1/3 each. This rank
dependent weighting can be done in a natural way by coupling po-
sitional scoring rules together with ordered weighted average oper-
ators (OWAs) [31], to create Rank Dependent Scoring Rules (RD-
SRs). Each RDSR is characterized by the combination of a vector
of both scores s and weights w where each si ∈ s ≥ 0 and each
wi ∈ w≥ 0.

RDSRs constitute an important class of aggregation procedures
that are used quite commonly in everyday life. Artistic sports in
the Summer and Winter Olympics, such as diving and skating, are
judged by first removing the high and low scores and averaging
the remaining scores achieved. Before recent changes, the London
Interbank Offer Rate (LIBOR) inter-day bank which is responsi-
ble for setting interest rates for most of the financial markets in the
world, was computed (and manipulated) by soliciting 18 estima-
tions of price, removing the high and low 4, and averaging the re-
maining 10 [1]. Additionally, biased aggregators such as these are
a new area of study and may effect the behavior of human raters
[14].

Order weighted averages have been studied in the context of car-
dinal utilities. In this paper we use OWAs to aggregate scores ob-
tained by candidates according to their ranks in the votes. This
requires us to export these rank dependent functions from cardi-
nal settings to ordinal settings. This allows us to apply rank de-



pendent functions in setting where eliciting cardinal utilities is not
feasible or expressible. Casting these functions as voting rules al-
lows us to study these aggregation procedures with the same tools
and techniques we use to study voting rules in social choice. Rank
dependent functions have received much attention in multi-criteria
decision making (see, e.g., Yager et al. [32]) and decision under
uncertainty (see, e.g., Diecidue and Wakker [8]).

Because w can give less weight to more extreme ranks given to
an alternative,1 we call these vectors extreme-averse. We expect
that rules obtained for such extreme-averse vectors will typically
be less frequently manipulable by small coalitions of voters than
the corresponding rules obtained for a uniform w.

In the next section we formalize the notion of combining posi-
tional scoring rules with OWA’s to create rank dependent scoring
rules (RDSRs). We then provide a background for and study some
axiomatic properties of this new class of voting rules. Next, we fo-
cus on a particular subclasses of RDSRs, called the “Borda family”,
obtained by fixing the scoring vector s to Borda, and allowing the
OWA vector to vary. Then we give experimental results that show
that under several different distributions over profiles, some typical
members of the Borda family are less frequently manipulable by a
single voter than the Borda rule.

2. FORMAL DEFINITIONS
An election is a pair E = (C,P) where C is the set of candidates

or alternatives {c1, . . . ,cm}, |C| = m, and P is a profile consisting
of a set of voters indexed by their preference orders, {�1, . . . ,�n},
|P| = n. Each voter is represented by a complete strict order (a
vote) over the set of candidates.

Many voting systems fall into a class called positional scoring
rules [27, 33]. With positional scoring rules there is a score vector
s = 〈α1,α2, . . . ,αm〉, with α1 ≥ α2 ≥ . . . ≥ αm and α1 > αm, that
assigns points to an alternative placed at that position in a vote. The
winners are the candidates maximizing the sum of points awarded
by each voter. Arguably the most famous positional scoring rules
are Borda and plurality, with sBORDA = 〈m− 1,m− 2, . . . ,m−m〉
and sPLURALITY = 〈1,0, . . . ,0〉.

To combine positional scoring rules with OWAs [31], we in-
troduce a weight vector w = 〈w1,w2, . . .wn〉 that is normalized,
(∑n

i=1 wi) = 1. Through this construction we are able to maintain
the property of anonymity in our voting rules while at the same
time moderating the results based on the given weight vector over
the ranks of candidates. Elkind et al. [10] introduced a family
of monotonic, non-homogenous rules, M-scoring rules, which are
special cases of OWA operators where M = m/2+ 1 entries equal
to weight 1 and all other entries are weight 0.

We formally define RDSRs in Definition 2 as irresolute social
choice functions, that output a possibly empty set of (co)winners;
as usual, irresolute rules can be made resolute by being combined
with a tie-breaking priority mechanism.2

DEFINITION 2. Given a scoring vector s = 〈s1, . . . ,sm〉 and an
OWA vector w = 〈w1, . . . ,wn〉, where m is the number of candidates
and n the number of voters, we can define a voting rule Fs,w(P)3

associated with s and w.
Let P = 〈�1, . . . ,�n〉 be a profile. For each voter �i and al-

ternative c j, let rank(c j,�i) be the rank of c j in vote �i. Let
1Though, we may also give more weight to more extreme ranks
given to an alternative, which is arguably much less desirable.
2As the composite scores also allow us to completely rank alterna-
tives, RDSRs can also be defined as social welfare functions, that
produce a set of weak orders on the set of alternatives.
3We will often omit P when it is clear from context.

r(c j,P) = 〈rank(c j,�1), . . . ,rank(c j,�n)〉 be the vector of ranks
received by candidate c j and r↑(c j,P) be the sorting of r(c j,P) in
non-decreasing order such that the elements r↑1 ≤ r↑2 ≤ . . .≤ r↑n.

For candidate c j we create a vector of the scores associated with
the ranks in all the votes to create the rank score vector, S(c j,P) =
〈srank(c j ,�1), . . . ,srank(c j ,�n)〉. In order to apply the OWA operators
we need to sort S(c j,P) in non-decreasing order. Thus let S↑(c j,P)
be a reordering of S(c j,P) where the elements S↑1 ≤ S↑2 ≤ . . . ≤
S↑n.

We can now define the score for each candidate c j as:

Ts,w(c j,P) = w ·S↑(c j,P) =
n

∑
i=1

wi×S↑i(c j,P)

and Fs,w selects the alternative(s) maximizing Ts,w(x,P).

Thus, w1 is associated with the worst score that an alternative
receives, w2 to the second worst score, etc.

EXAMPLE 3. As in Example 1, let m = 6, n = 4 and
P = 〈acbde f ,bcade f ,dcaeb f ,ebad f c〉. Now, let
s = sBORDA = 〈5,4,3,2,1,0〉, and w = 〈0,1/4,1/4,1/2〉.

w = 〈 0 1/4 1/4 1/2 〉 Ts,w(x)
S↑(a) = 〈 3 3 3 5 〉 4.0
S↑(b) = 〈 1 3 4 5 〉 4.25
S↑(c) = 〈 0 4 4 4 〉 4.0
S↑(d) = 〈 2 2 2 5 〉 3.5
S↑(e) = 〈 1 1 2 5 〉 3.25
S↑( f ) = 〈 0 0 0 1 〉 0.5

Therefore, the (unique) winner is b. If instead we choose w′ =
wOLYMPIC = 〈0,1/2,1/2,0〉, then the scores are respectively
3.0,3.5,4.0,2.0,1.5,0.0 and the winner is c (followed by b, a, d, e
and f ).

In all of our examples so far we have been using a weight vector
where we drop some of the extreme rankings. RDSRs are much
more general than this and, in fact, there are several interesting
cases that occur based on various settings to w. We define two
families of OWA vectors and then discuss a few specific cases of
induced voting rules.

k-Uniform Interval (wk-INTERVAL): Given parameter k, we drop
k scores at the beginning and ending of the OWA operator: w =
〈01, . . . ,0k,1/n−2k, . . . ,1/n−2k,01, . . . ,0k〉. This is a proper general-
ization of wOLYMPIC and allows us to capture other rules that are
used in practice such as the LIBOR interest rate setting aggrega-
tion rule [1]. As specific cases of k-uniform intervals we have: the
uniform vector wAVERAGE = 〈1/n, . . . ,1/n〉, obtained for r = 0; the
Olympic Average wOLYMPIC〈0,1/n−2, . . . ,1/n−2,0〉; and the median
(wMEDIAN) wn+1/2 = 1 when n is odd and w(n/2)+1 = 1 when n is
even, with wi = 0 for all other i. Using wAVERAGE leads to recover-
ing classical positional scoring rules.

k-Median (wk−MEDIAN): Given k ∈ {1, . . . ,n}, let wk−MEDIAN =
〈01,02, . . . ,0k−1,1k,0k+1,0n〉.

When k = n, then under the condition s1 > s2, we get the nomi-
nation rule where the co-winners are the candidates that are ranked
first (and thus have highest score) by at least one voter. More gen-
erally, if s1 = . . . = si > si+1, then the co-winners are the candi-
dates ranked among the top i candidates by some voter. Note that
Fs,wNOMINATION = Ft,wNOMINATION

for any two scoring vectors s, t such
that s1 > s2 and t1 > t2.



When k = 1, we recover a rule sometimes called “maximin”
[6],4 where all co-winners maximize the least score they receive,
or equivalently, minimize the largest rank they receive. Note that
this is independent of the setting of s, that is, for any two strictly
decreasing scoring vectors s, t, we have Fs,wMAXIMIN = Ft,wMAXIMIN

.
Finally, when n is odd, for k = n+1

2 we obtain again the median
rule, that for which the co-winners maximize their median rank;
again, this is “almost” independent of the setting of s (and fully
independent of the setting of s under the restriction that all scores
of s are distinct).

The median rank rule is reminiscent of the majority judgment
rule proposed by Balinski and Laraki [2]. However, there is a cru-
cial difference: majority judgment is defined for a cardinal profile
where each voter gives a score to each alternative. The RDSRs we
define map from ordinal profiles, as it is common in voting — this
is important, especially when it comes to position our voting rules
with respect to others.

3. PROPERTIES OF RDSRS
There are many properties surveyed in the social choice litera-

ture. A rule is said to have or obey a property if the property holds
for all possible profiles. We focus on properties important to us, and
refer the reader to texts in the literature for a more comprehensive
survey, e.g., [21].

Condorcet consistency states that, when one alternative is ma-
jority pair-wise preferred to all other candidates, that alternative is
the unique winner. Monotonicity states that, given a profile P and
winning candidate x, if we modify any set of votes in P to produce
P′ where the only change is promoting x, then x is still the winner
of the election run on the profile P′.

Other properties concern the behavior of voting rules when split-
ting, combining, and expanding the given profiles. Reinforcement
states that, given two disjoint profiles P1 and P2, if F(P1)∩F(P2) 6=
/0 then F(P1∪P2) = F(P1)∩F(P2). Participation states that a voter
x should never achieve a worse result according to his preferences
when he decides to vote. Homogeneity states that given a profile P,
multiplying all voters in the profile any number of times should not
change the result.

Reinforcement, participation, and homogeneity concern variable
electorates and are therefore not immediately applicable to rank-
dependent scoring rules, which are defined for a fixed value of n.
However, they apply to families of rules {w(n),n ≥ 1} of vectors
(one for each possible number of votes), exactly like properties that
concern variable sets of alternatives need scoring rules (typically
defined for a fixed m) to be defined as families of rules for a varying
m.

All RDSRs satisfy anonymity and neutrality. We show that mono-
tonicity (satisfied by all scoring rules) extends to rank-dependent
scoring rules.

PROPOSITION 4. For every w and s, Fs,w is monotonic.

Proof. Let P be a profile and x ∈ Fs,w(P). Let P′ be obtained by
raising x from rank i to rank i−1 in one of the votes, leaving every-
thing else unchanged. Let j be the number of votes in P who rank x
in the first i−1 positions. Then S↑(x,P)= 〈S↑1, . . . ,S↑n− j, . . . ,S↑n〉,
with S↑n− j = si, and S↑(x,P′)= 〈S↑′1, . . . ,S↑

′
n− j, . . . ,S↑

′
n〉with S↑′k =

S↑k for all k 6= n− j and S↑′n− j = si−1. Because si−1 ≥ si, S↑(x,P′)
weakly Pareto-dominates S↑(x,P′), therefore Ts,w(x,P′)≥Ts,w(x,P).
4Beware: this rule should not be confused with the Simpson-
Kramer rule, which is also often called “maximin”. For this reason
we use the terminology “maximin-score” rather than “maximin”.

Similarly, Ts,w(x′,P′) ≤ Ts,w(x′,P) for any x′ 6= x; therefore, the
score of x remains maximal when moving from P to P′, and x ∈
Fs,w(P). q

The following example shows that RDSRs do not necessary ful-
fill reinforcement nor homogeneity, even for natural collection of
scoring vectors and OWA vectors.

EXAMPLE 5. Set wOLYMPIC and sBORDA. Let C = {a,b,c,d,e}
and P = 〈abcde,bcade,deacb〉. This gives us S↑(a,P) = 〈2,2,4〉,
S↑(b,P) = 〈0,3,4〉, S↑(c,P) = 〈1,2,3〉, S↑(d,P) = 〈1,1,4〉, and

S↑↑(b,P)= 〈0,0,3〉, thus, Ts,w(a,P)= 2, Ts,w(b,P)= 3, Ts,w(c,P)=
2, Ts,w(d,P) = 1, Ts,w(e,P) = 0, and the winner is b.

Now, let 3×P be the 9-voter profile obtained by replacing each
vote in P by three identical votes. We now have
S↑(a,P)= 〈2,2,2,2,2,2,2,4,4,4〉, S↑(b,P)= 〈0,0,0,3,3,3,4,4,4〉,
etc. Thus, Ts,w(a,P) = 18/7, Ts,w(b,P) = 17/7, Ts,w(c,P) = 16/7,
Ts,w(d,P) = 11/7, Ts,w(e,P) = 6/7, and the winner is a.

Example 5 shows that some natural RDSRs are not homoge-
neous, and, a fortiori, do not satisfy reinforcement. This implies
that the class of RDSR contains elements that are not generalized
scoring rules [30].

PROPOSITION 6. For every m ≥ 3 and n ≥ 5, no rule Fs,w is
Condorcet-consistent.

Proof. Assume n ≥ 5 and n 6= 8. Let X = {x1, . . . ,xm}. Let
k = b n

3 c and q = n− 3k (note that q ≤ 2); let P be the following
profile: we have k votes x1 � x2 � . . . � xm, k votes xm � x1 �
. . . � xm−1 and n− 2k = k+ q votes x2 � . . . � xm−2 � x1 � xm.
Because n≥ 5 and n 6= 8, we have 2k > n

2 and, a fortiori, 2k+q >
n
2 , therefore x1 is a Condorcet winner. Now, the nondecreasingly
reordered score vector for x1 is 〈n− 2k× sm−1,k× s2,k× s1〉 and
that of x2 is 〈k× s3,k× s3,n− 2k× s1〉, therefore the scores of x1
and x2 are

Ts,w(x1) = ∑
k+q
i=1 wism−1 +∑

2k+q
i=k+q+1 wis2 +∑

n
i=2k+q+1 wis1

Ts,w(x2) = ∑
k
i=1 wis3 +∑

2k
i=k+1 wis2 +∑

n
i=2k+1 wis1.

and

Ts,w(x1)−Ts,w(x2)

= ∑
k
i=1 wi(sm−1− s3)+∑

k+q
i=k+1 wi(sm−1− s2)

+∑
2k
i=k+q+1 wi(s2− s2)+∑

2k+q
i=2k+1 wi(s2− s1)

+∑
n
i=2k+q+1 wi(s1− s1).

None of the five terms can be strictly positive, therefore Ts,w(x1)−
Ts,w(x2)≤ 0, which entails Fs,w(P) 6= {x1}, which shows that what-
ever the value of w and s, Fs,w(P) is not Condorcet-consistent. The
proof for n = 8 is similar, but taking 2 votes x1 � x2 � . . .� xm, 3
votes xm � x1 � . . .� xm−1 and 3 votes x2 � . . .� xm−2 � x1 � xm.
q

This result generalizes the known result from Fishburn [13] and
Moulin [21] that no scoring rule is Condorcet-consistent.

4. THE BORDA FAMILY
In this section we focus on a specific subclass of RDSRs, ob-

tained by fixing the scoring vector to match the Borda scoring vec-
tor sBORDA = 〈m− 1,m− 2, . . . ,m−m〉. Maximizing an OWA ap-
plied to scores is equivalent to minimizing an OWA applied to
ranks, hence this family (all RDSRs realizable using a Borda scor-
ing rule) is particularly meaningful (besides the importance of the



Borda rule in voting). A first question is, are there any positional
scoring rules, apart from Borda, which belong to the Borda family?
The answer is, somewhat surprisingly, positive, when n and m are
both fixed.

PROPOSITION 7. Let n and m be fixed, and define:
wLEXIMIN = 〈mn−1/W ,mn−2/W , . . . ,mn/W ,1/W〉 and
wLEXIMAX = 〈1/W ,mn/W , . . . ,mn−2/W ,mn−1/W〉, where W = 1 + m +
. . .+mn−1. Then FsBORDA ,wLEXIMIN and FsBORDA ,wLEXIMAX are classical
scoring rules, associated with the scoring vectors:
sLEXPL = 〈nm−1,nm−2, . . . ,n2,n,1〉 and sLEXAPL = 〈nm−1,nm−1 −
n, . . . ,nm−1−nm−2,0〉.

Proof. Let us start with FsBORDA ,wLEXIMIN . For any profile P and
integer k, let Ak(x,P) be the number of votes in P in which x is
ranked in position k, and Bk(x,P) = ∑ j≤k Ak(x,P) be the number
of votes in P in which x is ranked in position at most k. Recall
that ri(x) is the ith best rank given to x, and m− ri(x) the ith best
Borda score given to i. Note that we have ri(x) = k if and only if
(1) Bk−1(x,P)< i and (2) Bk(x,P)≥ i.

We claim that (1) for any x,y, we have TsBORDA ,wLEXIMIN (x)>
TsBORDA ,wLEXIMIN (y) if and only if there is a k≤m−1 such that (a) for
all i < k, Ai(x,P) = Ai(y,P) and (b) Ak(x,P)> Ak(y,P).

Assume that (a) and (b) hold for some k. Let i∗ = Bk(y,P)+ 1.
Because of (a) and (b), we have ri∗(x) = k and ri∗(y) ≥ k+1, and
for all i≤ i∗, ri(x) = ri(y). Now,

TsBORDA ,wLEXIMIN (x)−TsBORDA ,wLEXIMIN (y)
= 1

W ∑
n
i=1 mn−i(m− ri(x))− (m− ri(y))

= 1
W ∑

n
i=1 mn−i(ri(y)− ri(x))

= 1
W
(
mn−i∗(ri∗(y)− ri∗(x))+∑i>i∗ mn−i(ri(y)− ri(x))

)
≥ 1

W
(
mn−i∗ −∑i>i∗ mn−i(m−1)

)
> 0.

Conversely, if (a) and (b) do not hold then for all k, we have
Bk(x,P)≤ Bk(y,P), therefore, for all i, ri(x)≥ ri(y), which implies
TsBORDA ,wLEXIMIN (x)≤ TsBORDA ,wLEXIMIN (y).

Now, we claim that (2) the total score according to the scor-
ing rule associated with sLEXPL, TsLEXPL (x) > TsLEXPL (y) if and only
if there is a k ≤ m−1 such that (a) for all i < k, Ai(x,P) = Ai(y,P)
and (b) Ak,P(x)> Ak,P(y).

Assume (a) and (b) hold. We have TsLEXPL (x) = ∑
m
i=1 Ai(x,P) ·

nm−i. Note that, for any i, |Ai(x,P)−Ai(y,P)| ≤ n. Then
TsLEXPL (x,P)−TsLEXPL (y)

= ∑
m
i=1 Ai(x,P) ·nm−i−∑

m
i=1 Ai(y,P) ·nm−i

= (Ak(x,P)−Ak(y,P))nm−k +∑
m
i=k+1(Ai(x,P)−Ai(y,P))nm−i

≥ nm−k +(n) ·nm−k+1

> 0.
Conversely, if (a) and (b) do not hold then for all k ≤ m−1, we

have Ak(x,P)≤ Ak(y,P); this means that either there is a k≤m−1
such that (a) for all i ≤ k, Ai(x,P) = Ai(y,P) and (b) Ak(y,P) >
Ak(x,P), in which case TsLEXPL (y)−TsLEXPL (x,P) ≥ 0, or that for all
k, Ak(x,P) = Ak(y,P), in which case TsLEXPL (y)−TsLEXPL (x) ≥ 0 as
well.

(1) and (2) together imply that FsBORDA ,wLEXIMIN is the scoring rule
associated with scoring vector sLEXPL. The proof that FsBORDA ,wLEXIMAX

is the scoring rule associated with scoring vector sLEXAPL is similar.
q

EXAMPLE 8. Let m = 4, n = 6, and the profile P be composed
of two votes x� t � z� y, 2 votes y� t � x� z, one vote z� y� x�
t and one vote t � z � x � y. The vectors of ranks, reordered non-
decreasingly, are r↑(x) = 〈1,1,3,3,3,3〉; r↑(y) = 〈1,1,2,4,4,4〉;

r↑(z) = 〈1,2,2,2,4,4〉; r↑(t) = 〈1,2,2,3,3,4〉. We have A1(y,P) =
A1(x,P) and A2(y,P) > A2(x,P), therefore TsLEXPL (y) > TsLEXPL (x);
and we have A1(y,P) > A1(z,P) and A1(y,P) > A1(t,P), there-
fore TsLEXPL (y) > TsLEXPL (z) and TsLEXPL (y) > TsLEXPL (t): the winner
for sLEXPL is y. We can also check that the winner for sLEXAPL is x.

Note that if n is not fixed, then FsBORDA ,wLEXIMIN and FsBORDA ,wLEXIMAX

are not scoring rules in the usual sense, because all weights but one
would have to be infinitesimals.

Therefore, when n and m are fixed, at least three rules are in
the intersection of the family of scoring rules and the Borda fam-
ily (Borda, lexicopraphic plurality and lexicographic antiplurality),
whereas when only m is fixed, only Borda is known to be both in
the family of scoring rules and in the Borda family. We conjecture
that the intersection (on both cases, n fixed and n not fixed) do not
contain any other rules than these, but did not come up with a proof.

5. RDSRS AND FAIRNESS
The use of the OWA operator in RDSRs allows an election de-

signer to favor a fair distribution of satisfaction among voters, when-
ever this property is seen as desirable. The score Ts,w(c j,P) can
act as an inequality measure (see, e.g., [29]) taking into account
the distribution of scores srank(c j ,�k),k = 1, . . . ,n whenever weights
satisfy w1 > w2 > .. . > wn > 0.

The intuition behind choosing strictly decreasing weights can be
given as follows: one puts more weight on the least satisfied voter
(smallest score), then on the second least satisfied voter and so on.
This is a natural extension of the min and leximin operators. These
operators allow for more compensation between scores assigned to
alternatives by the voters. With a proper choice of weights, there
remains some possibility for the election designer to compensate
the dissatisfaction of one agent by the satisfaction of some oth-
ers, while still preserving a somewhat egalitarian notion of fairness
by favoring alternatives that have a well-balanced scoring profile.
Specifically, we want to favor candidates whose vectors of scores
do not contain too many extreme scores.

This can be stated more formally using transfers that reduce so-
cietal inequality, also known as Pigou-Dalton tranfers [22], by the
following proposition.

PROPOSITION 9. Let P = (�1, . . . ,�n) be a preference profile
and c a candidate such that rank(c,�k)< rank(c,�i) for some pair
of voters (i,k). Then for any candidate c′ such that vector r(c′,P)
and r(c,P) satisfies:

srank(c′,�k) = srank(c,�k)− ε

srank(c′,�i) = srank(c,�i)+ ε

srank(c,� j) = srank(c′,� j), ∀ j ∈ N \{i,k}

for some ε ∈ (0,sk−si), then Ts,w(c′,P)> Ts,w(c,P) whenever w is
strictly decreasing.

Proof. Let L and L′ be the two vectors of Rn defined by L j =

∑
j
k=1 S↑k(c,P) and L′j = ∑

j
k=1 S↑k(c′,P) for all j ∈ N. Since we

pass from S↑(c,P) to S↑(c′,P) using a Pigou-Dalton transfer of
size ε from component srank(c,�k) to component srank(c,�i) then we
know that L′ Pareto-dominates L [17, 26].

Now, let w′ be the vector derived from w by setting: w′n =wn and
w′j =w j−w j+1 for j = {1, . . . ,n−1}, we observe that Ts,w(c,P) =
w′ ·L and Ts,w(c′,P) = w′ ·L′. Then, due to the strictly decreasing
property on w, we know that w′j > 0 for all j ∈ N. Hence w′j ·
L′j ≥ w′j ·L j for all j ∈ N, one of these inequalities being strict by



Pareto dominance. Hence w′ ·L′ >w′ ·L and therefore Ts,w(c′,P)>
Ts,w(c,P). q

Hence, when using strictly decreasing weights, an alternative c
maximizing an OWA score Ts,w(c,P) over the set of alternatives
has a scoring vector S↑(c,P) that cannot be improved in terms of
Pigou-Dalton transfer by another vector S↑(c′,P). This is a way of
rewarding fairness in score aggregation as illustrated in the follow-
ing Example.

EXAMPLE 10. Let m = 4, n = 3, P = 〈acbd,cbad,dbac〉, s =
sBORDA, and w = 〈1/2,1/3,1/6〉.

w = 〈1/2 1/3 1/6 〉 Ts,w(x)
S↑(a) = 〈 1 1 3 〉 8/6
S↑(b) = 〈 1 2 2 〉 9/6
S↑(c) = 〈 0 2 3 〉 7/6
S↑(d) = 〈 0 0 3 〉 3/6

Here b is the winner whereas a,b,c would remain indifferent un-
der the Borda rule, , while the maximin-score rule (cf. Footnote 4)
would also be indifferent between a and b. Note that the Leximin
refinement of the maximin-score rule would yield the same ranking
b � a � c � d as Ts,w, but this is not always the case. Consider
the scoring vectors S↑(x) = 〈0,3,3〉 and S↑(y) = 〈1,1,1〉. We get
Ts,w(x) = 3/2 whereas Ts,w(y) = 1. In such drastic cases where fair-
ness is strongly conflicting with overall efficiency (measured by the
sum of scores), RDSRs allow the election designer the possibility of
sacrificing a minority of opinions so as to preserve a high average
score, thus departing from the Leximin refinement of the maximin-
score rule rule.

6. MANIPULATION: EMPIRICAL EXPER-
IMENTS

We conjecture that RDSRs that drop the extreme ranks may be,
on average, less manipulable than standard scoring rules. Since all
voting rules are manipulable we can only hope that by dropping
some of the extreme ranks we have defined a class of voting rules
that is manipulable less often in expectation. Since RDSRs are
used in practice in situations with small numbers of voters, such as
Olympic artistic scoring and interest rates, we investigate settings
that contain one manipulator and just a handful of voters.

Because RDSRs are an irresolute class of voting rules we must
be careful in our definition of manipulation in this setting. We
use the definition from Duggan and Schwartz [9] known as the
optimistic manipulator assumption. Formally, a manipulation by
voter i exists if if there is a vote �′i and candidate p such that
p ∈ Fs,w({P\ �i}∪ �′i) and rank(p,�i) > rank( j,�i) for all j ∈
Fs,w(P).

Worst-case results about the hardness of manipulation abound in
social choice [3, 7, 12] but these results may not reflect the cost in
practice to compute manipulations [28, 19, 24]. Many such anal-
yses assume that all preferences are equally likely, but that is not
supported by studies in behavioral social choice [25, 23] or studies
on real data [18, 25]. In order to understand how the manipulability
RDSRs changes with respect to the underlying distribution of votes
we use five generative statistical cultures to create profiles for our
testing.

We study manipulation under several assumptions about the dis-
tribution of preferences over the m candidates. The Impartial Cul-
ture (IC) assumes the probability of observing any of the m! pref-
erence orders is equally likely for each voter; namely p = 1

m! . This

culture is a kind of worst case assumption, we do not know any-
thing about the feelings of the underlying voters so we assume there
is no bias in the generation process. The Impartial Anonymous
Culture (IAC) is a strict generalization of IC which assumes the
probability of observing any probability distribution over the m!
possible orders is equally likely. That is, each vector of length m!
that has sum 1 that describes the distribution over the m! possible
votes is equally likely to occur.

The Mallows Mixture Models (MM) makes the underlying as-
sumption that there is a true ranking and that individuals deviate
from the ground truth with decreasing probability as the ranking
moves away from the reference. Given reference rankings σ1, . . .σn,
probabilities φ1, . . . ,φn, and mixture model (discrete probability
distribution) π1, . . . ,πn, we generate rankings that have a Kendall
Tau distance τ = (σ ,σ ′) from the reference ranking that is pro-
portional to φ τ

i . We select among the n models by selecting one
randomly from the given probability distribution [16, 15].

Finally we examine a distribution which creates a correlation be-
tween the shape of the individual preference profiles. The Sin-
gle Peaked Impartial Culture (SPIC) assumes that each single
peaked preference profile compatible with m candidates is equally
likely. Single-peakedness is is an important domain restriction in-
troduced by Black [4] and is widely studied in the computational
social choice community for its strategic [11] and empirical prop-
erties [18]. Intuitively, single-peakedness is the idea that all voters
have a point along a shared axis where they would be happiest, and
rank candidates farther from this point worse.

In Figures 1 and 2 we compare the manipulability of the Borda
scoring vector with OWAs using variants of the wk-INTERVAL weight
vectors. For each of the statistical cultures mentioned, we gener-
ate 1000 random instances and test, via brute force search, whether
a single agent that is randomly drawn from the set of voters can
successfully manipulate the instance. We disregard any instances
where the outcome of the profile is the same as the would-be ma-
nipulator’s honest preference, as there is no point in manipulating.

Looking at the results we see that, as we induce more correla-
tion between the voters, we decrease the opportunities for manip-
ulation. MM models with 5 references are closer to IC and IAC
models that MM models with 1 reference, which is closer to SPIC.
Even with the decreased opportunities for manipulation in these
correlated models, RDSRs do better when we drop a small per-
centage of the extreme ranks. This is probably because, in these
small settings, one extreme voter can move a particular candidate
up or down based on an extreme rank. If a particular candidate
is receiving 1’s and 2’s on average and we give him a 9, then this
score is very out of line with the feelings of the group. However,
using wk-INTERVAL vectors we can downplay these extreme scores
and move more towards the median view of all the voters. Similar
results were shown by Cervone et al. [5] in their work on voting
rules that use the mediancenter to aggregate preferences.

We ran the same experiment for settings with 20 (Figure 2) and
30 voters. As with most results on manipulation, as the pool of
voters grows larger, the opportunities for manipulation decrease.
In the uncorrelated models there is still a (relatively) large chance
for manipulation; when we go to the correlated models we elimi-
nate these opportunities. This may be why variants of wk-INTERVAL

are used for artistic sports in the Olympics and other places where
there is some general consensus about technical ability with small
perturbations in the final orderings of the individual voters. In these
settings, as we can see from our experiments, mixing scoring rules
with OWA vectors can help to eliminate incentives for individuals
to misreport their preferences.
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Figure 1: Graphs showing the frequency of manipulation for OWAs using the wk-INTERVAL weight vector versus normal Borda
scoring for instances with 10 voters. Generally, as we increase r towards the median we have less opportunity for manipulation. This
relationship becomes particularly strong as we increase the correlation among the votes.

7. CONCLUSION
We have defined and analyzed a broad class of voting rules that

take into account the weighted rank that a candidate receives in
the ordered list of scores obtained from a profile of voters. This
new family of voting rules, RDSRs, include many frequently used
rules, including positional scoring rules and Olympic style scor-
ing. We have shown that some of these rules, which drop some
extreme ranks, appear to be less manipulable in practice than tradi-
tional scoring rules. We would like to have a complete axiomatic
characterization of this class of rules so that we can correctly po-
sition it with respect to traditional scoring rules and other families
of aggregation procedures. It would be interesting to extend our
empirical analysis with additional statistical models or using data
from real-world elections [20].
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Figure 2: Graphs showing the frequency of manipulation for OWAs using the wk-INTERVAL weight vector versus normal Borda scoring
for instances with 20 voters. Generally, as we increase r towards the median we have less opportunity for manipulation. Additionally,
we see that the power of an individual manipulator is much lower in a setting with more other voters.
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