
Election Attacks with Few Candidates

Yongjie Yang
Universität des Saarlandes

Campus E 1.7, D-66123 Saarbrücken, Germany
yyongjie@mmci.uni-saarland.de

ABSTRACT
We investigate the parameterized complexity of strategic behaviors
for generalized scoring rules. In particular, we prove that the ma-
nipulation, control (all the 22 standard types) and bribery problems
are fixed-parameter tractable for most of the generalized scoring
rules, with respect to the number of candidates. Our results im-
ply that all these strategic problems are fixed-parameter tractable
for most of the common voting rules, such as plurality, k-approval,
Borda, Copeland, Maximin, Bucklin, etc., with respect to the num-
ber of candidates.

1. INTRODUCTION
Voting has been recognized as a common approach for prefer-

ence aggregation and collective decision making whenever there
exists more than one alternative for a community to choose from. It
comes with a wide variety of applications which ranges from multi-
agent systems, political elections, recommendation systems, ma-
chine learning etc. [24, 25, 31]. Unfortunately, due to the Gibbard-
Satterthwaite theorem [15, 27], any voting system which satisfies
a set of desirable criteria is not strategy-proof, that is, there exists
a voter who can make himself better off by misreporting his vote.
To address this issue, Bartholdi et al. [17] introduced the compu-
tational complexity to the study of strategic voting problems. The
idea is, if a specific strategic behavior is NP-hard to perform, the
strategic individual may give up his attack. Since then, exploring
the complexity of strategic behaviors in voting systems has been
one of the main focus of computational social choice communities.
We refer to [2, 4, 19] for comprehensive surveys on this topic.

Recently, this purely worst-case analysis which regardless of real-
world settings was criticized by researchers. See [5, 13, 20, 26, 28]
for detailed discussions. For their purpose, they proposed diverse
measurements to evaluate the feasibility of strategic behaviors in
practical elections. For example, Procaccia and Rosenschein [26]
introduced the junta distributions (generally speaking, these are dis-
tributions over the elections that satisfy several constraints.) and
proved that if an algorithm often succeeds in deciding manipula-
tion when the instances of the problem are distributed according
to a junta distribution, it would also succeed in deciding manipu-
lation when the instances are distributed according to many other
plausible distributions.

In this paper, we study the strategic behaviors in a variety of vot-

Appears at: 1st Workshop on Exploring Beyond the Worst Case in Com-
putational Social Choice. Held as part of the 13th International Conference
on Autonomous Agents and Multiagent Systems. May 6th, 2014. Paris,
France.

ing systems from the parameterized complexity perspective. The
parameterized complexity was first systematically introduced by
Downey and Fellows [7, 8]. Differently from classical complexity,
the parameterized complexity deals with problems in two dimen-
sions. More specifically, an instance of a parameterized problem
consists of a main part and a parameter κ which is normally a pos-
itive integer. For example, the parameterized version of the vertex
cover problem consists of an undirected graph, which is the main
part, and a positive integer parameter κ. Instead of looking for a
vertex cover with minimum size, the objective here is to find (or
determine whether there is) a vertex cover of size at most κ. The
main task in the parameterized complexity is to explore how the
parameters affect the solvability of the problems. It turned out that
under the framework of the parameterized complexity, many NP-
hard problems become tractable with respect to specific parameter-
izations. More precisely, many NP-hard problems turned out to
be solvable in f(κ) · |I|O(1) time. Here, f is a computable func-
tion that depends only on the parameter κ. All the parameterized
problems which fall into this category are called fixed-parameter
tractable (FPT for short). However, the parameters do not always
behave in this way. There are parameterized problems which do
not admit FPT -algorithms unless the parameterized complexity
hierarchy collapses at some level, which is commonly believed to
be unlikely. This discussion is beyond our focus of this paper. For a
comprehensive understanding of parameterized complexity, we re-
fer to [22]. From this point, the parameterized complexity offers a
complementary insight into strategic behaviors in voting systems to
the purely classic worst-case analysis and the average-case analy-
sis methods. For recent developments of parameterized complexity
applied to computational social choice, we refer to [2, 19].

A natural parameter in the voting scenario is the number of can-
didates. This parameter is relatively small in some real-world set-
tings. For example, a political election normally contains only a
few candidates. Besides, a reference library of preference data as-
sembled by Mattei and Walsh [20] also reveals such a situation.
Out of their 14 sets of election data from the real-world settings, 5
data sets contain less than 10 candidates each (March 14, 2014).

In this paper, we aim at deriving a general framework for achiev-
ing FPT results with respect to the number of candidates. To
this end, we adopt the concept of the class of generalized scoring
rules which was introduced by Xia and Conitzer [32]. In particular,
we prove that the manipulation, control (all the 22 standard types)
and bribery problems are FPT for most of the generalized scor-
ing rules, with respect to the number of candidates. Since many
common voting rules fall into the category of the generalized scor-
ing rules [21, 32, 33], these tractability results hold for these vot-
ing rules, among which are all the positional scoring rules (e.g.,
Borda, k-approval, veto, plurality), Condorcet, Copelandα, Max-

imin, Bucklin, ranked pairs, Nanson’s and Baldwin’s.

Related Works. Hemaspaandra, Lavaee, and Menton [16] studied
the manipulation, control and bribery problems in Schulze’s and
ranked pairs voting systems. They proved that all these strategic
problems in Schulze’s and ranked pairs voting systems are FPT
with respect to the number of candidates. Gaspers et al. [14] proved
that the manipulation problem in Schulze’s voting system is in-
deed polynomial-time solvable for any number of manipulators.
Faliszewski et al. [12] studied Copelandα control problems and
achievedFPT results for most of the control problems in Copelandα

voting with respect to the number of candidates, for every 0 ≤ α ≤
1. For discussions of further voting problems which areFPT with
respect to the number of candidates, we refer to [1, 2, 3, 6, 9]. Com-
pared with those works, we focus on deriving a general framework
to achievingFPT results with respect to the number of candidates.
Our work greatly reduces the ad-hoc analysis for each specific vot-
ing rule.

2. PRELIMINARIES
Common Rules. We follow the terminologies in [33]. Let C =
{c1, ..., cm} be the set of candidates. A linear order on C is a tran-
sitive, antisymmetric, and total relation on C. The set of all linear
orders on C is denoted by L(C). An n-voter profile P on C consists
of n votes defined by linear orders on C. That is, P = (V1, ..., Vn),
where for every i ≤ n, Vi ∈ L(C). Each vote represents the pref-
erences of the respective voter over the candidates. In particular, a
candidate c is ordered higher than another candidate c′ in a vote, if
the voter prefers c to c′. For convenience, we also use�i to denote
a vote. Throughout this paper, we use the words vote and voter
interchangeably. The set of all profiles on C is denoted by P (C).
In the remainder of the paper, m denotes the number of candidates
and n denotes the number of voters. A (voting) rule r is a function
from the set of all profiles on C to C, that is, r : P (C) → C. Here
r(P) is the winner.

• Positional scoring rules. Every candidate gets a specific score
from each vote according to the position of the candidate in
the vote. More specifically, a scoring voting rule is defined
by a scoring vector ~λ = (λ1, λ2, ..., λm) with λ1 ≥ λ2 ≥
, ...,≥ λm. The candidate ordered in the i-th position in a
vote gets λi points from this vote. The winner is the candi-
date with the highest score. If more than one candidate has
the highest score, we break the tie by a fixed deterministic
tie-breaking rule. This applies to all the other voting rules
discussed in this paper. Following are some well-known po-
sitional voting rules.

voting rules scoring vectors
Borda (m− 1,m− 2, ..., 0)
k-approval (1, ..., 1, 0, ..., 0) with exactly k many 1’s.
plurality (1, 0, 0, ..., 0)
veto (1, 1, ..., 1, 0)

• Condorcet. For two candidates c and c′, let N(c, c′) denote
the number of votes which prefer c to c′. We say c beats c′ if
N(c, c′) > N(c′, c). The Condorcet winner is the candidate
which beats every other candidate.

• Maximin. The maximin score of a candidate c is defined as
minc′∈C\{c}N(c, c′). The winner is the candidate with the
highest maximin score.

• Copelandα. Each candidate is compared with every other
candidate. In each comparison, the one which beats its ri-
val gets one point and its rival gets zero points. If they are
tied, both get α points. The winner is the candidate with the
highest score.

• Instant-runoff (STV): If a candidate is ordered in the first po-
sition by the majority of the votes, the candidate wins. Oth-
erwise, the candidate which is ordered in the first position by
the least number of votes is eliminated. This is repeated until
the winning candidate receives a majority of the vote against
the remaining candidates.

Generalized Scoring Rules. In the following, we give the defi-
nition of the class of the generalized scoring rules which was intro-
duced by Xia and Conitzer [33].

Let K = {1, ..., k}. For any ~a,~b ∈ Rk, we say that ~a and ~b
are equivalent with respect to K, denoted by ~a ∼K ~b, if for any
i, j ∈ K,~a[i] > ~a[j]⇔ ~b[i] >~b[j] and ~a[i] < ~a[j]⇔ ~b[i] <~b[j]
(where ~a[i] denotes the i-th component of the vector ~a, etc.).

A function g : Rk → C is compatible with K if for any ~a,~b ∈
Rk,~a ∼K ~b⇒ g(~a) = g(~b).

Let k ∈ N, f : L(C) → Rk, and g : Rk → C where g is
compatible with K. The functions f and g determine the gener-
alized scoring rule GS(f, g) as follows. For any profile of votes
V1, ..., Vn ∈ L(C), GS(f, g)(V1, ..., Vn) = g(

∑n
i=1 f(Vi)). That

is, every vote results in a vector of scores according to f , and g
decides the winner based on comparisons between the total scores.
Here we call f the generalized scoring function and g the deci-
sion function. Moreover, we say that GS(f, g) is of order k and∑n
i=1 f(Vi) is the total generalized score vector of the profile ac-

cording to GS(f, g). For convenience, we also use f(P) to denote∑n
i=1 f(Vi), where P is the profile with the votes V1, ..., Vn
Many common voting rules fall into the category of the gener-

alized scoring rules. For example, for the Borda voting rule, the
corresponding generalized scoring rule is specified as follows.
kBorda = m.
fBorda(V) = (s(V, c1), ..., s(V, cm)), where s(V, ci) is the

score of ci from the vote V .
gBorda(fBorda(P)) = argmaxi(fBorda(P)), that is, the win-

ner is the one with highest Borda score.
In particular, we point out that the class of generalized scor-

ing rules also encapsulates many multiround run-off voting rules,
that is, voting rules where the winners are determined via several
rounds. A typical example is the STV voting rule. The following
lemma, from [21, 33], summarizes the common voting rules known
to fall into the category of generalized scoring rules.

LEMMA 1. The following voting rules are generalized scoring
rules: all the positional scoring rules, Condorcet, Copelandα, Max-
imin, STV, Baldwin’s, Nanson’s, Ranked pairs, Bucklin.

We remark that the definition of generalized scoring rules can be
straightforwardly generalized to voting rules selecting more than
one winner (for example, all the predefined voting rules could se-
lect more than one winner if no tie-breaking rule is performed). A
common voting rule which is precluded by the class of generalized
scoring rules is the Young’s voting rule [33].

Strategic Behaviors. We make use of the standard definitions of
strategic behaviors in computational social choice. In the follow-
ing, we briefly introduce the problems discussed in this paper. We

refer to [10, 12] for all the detailed definitions, including the ma-
nipulation, bribery and all the 22 standard control problems. In all
these problems, we have as input a set C ∪{p} of candidates where
p is a distinguished candidate, and a profile P = {V1, ..., Vn} of
votes. The question is whether the distinguished candidate p can
become a winner or become a loser by imposing a specific strate-
gic behavior on the voting. The former case of making p a win-
ner is called a constructive strategic behavior, and the latter case is
called a destructive strategic behavior. Observe that if the problem
of a specific constructive strategic behavior isFPT with respect to
the number of candidates, so is the corresponding destructive case.
To check this, suppose that we have an FPT algorithm Algo for
a specific constructive strategic behavior problem. Then, we can
guess a candidate p′ ∈ C and run the algorithm Algo but with the
distinguished candidate being p′. Since we have at mostm guesses,
the destructive case is solved in FPT time. Due to this fact, we
consider only the problems of constructive strategic behaviors.

Manipulation. In addition to the aforementioned input, we have
a set V ′ of voters who did not cast their votes yet. We call these
voters manipulators. The question is whether the manipulators can
cast their votes in a way so that p becomes a winner.

Bribery. The bribery problem asks whether we can change at
most κ votes (in any way but still linear orders over the candidates)
so that p becomes a winner, where κ ∈ N is also a part of the input.

Control. There are totally 11 standard constructive control be-
haviors. Among them 7 are imposed on the candidate set and 4
are imposed on the vote set. We first discuss the candidate control
cases. In these scenarios, we either add some candidates (limited or
unlimited), or delete some candidates, or partition the candidate set
into two sets (run-off or non-run-off partitions with ties-promote
or ties-eliminate models). Since the number of the candidates is
bounded by the parameter m, we can enumerate all the possibil-
ities of performing the control strategic behaviors in FPT time
with respect to m. Thus, if the winner is determinable in FPT
time (which holds for all the common voting rules studied in this
paper) with respect tom, the candidate control problems areFPT .
In the following, we confine our attention to the vote control prob-
lems.

Deleting votes. The problem of control by deleting votes asks
whether we can remove at most κ votes from the given profile so
that p becomes the winner, where κ ∈ N is also a part of the input.

Partition votes. In the control by partitioning of votes, we are
asked the following question: is there a partition of P into P1

and P2 such that p is the winner of the two-stage election where
the winners of election (C ∪ {p}, P1) compete against the win-
ners of (C ∪ {p}, P2)? We distinguish ties-promote model and
ties-eliminate model. In the ties-promote model, all the candidates
which are tied as winners (all candidates having the highest score
are regarded as winners) in the first-stage election are promoted to
the second stage election. In this setting, the fixed deterministic tie-
breaking rule mentioned before is applied only in the second stage
election. In the ties-eliminate model, if there is more than one win-
ner, then all these winners will not be moved to the second stage
election.

Adding votes. In addition to the aforementioned input, we have
another list P ′ of unregistered votes, and are asked whether we can
add at most κ votes in P ′ to P so that the distinguished candidate
p becomes the winner.

3. THE GENERAL FRAMEWORK

In this section, we investigate the parameterized complexity of
strategic behaviors under the class of generalized scoring rules. Our
main result is summarized in the following theorem.

THEOREM 2. Let ϕ be a generalized scoring voting rule of or-
der k, and let f be the generalized scoring function and g the de-
cision function. If both f and g are computable in FPT time with
respect to the number of candidates, then the manipulation, bribery
and all the 22 types control problems are FPT under ϕ, with re-
spect to the number of candidates.

PROOF. According to the discussion in Section 2, we can con-
fine our attention to the constructive strategic behaviors of manip-
ulation, bribery, control by adding/delting/partition votes. We de-
rive FPT -algorithms for these problems. Our algorithms rely on
the theorem by Lenstra [18], which implies that the integer linear
programming (ILP) is FPT with respect to the number of vari-
ables. Specifically, we reduce the instances of the stated problems
to instances of ILP with the number of variables bounded by some
function in m.

Since the generalized scoring function f is computable in FPT
time with respect to m, the order of the generalized scoring rule
must be bounded by some function in m, that is, k ≤ ψ(m),
where ψ is a function in m. Due to the definition of the gen-
eralized scoring rules, we need focus on at most 3(

k
2) different

types of total generalized score vectors (for each pair of subindices
i, j ∈ {1, 2, ..., k}, we have either ~a[i] > ~a[j] or ~a[i] = ~a[j], or
~a[i] < ~a[j]). Here we say two vectors~a,~b ∈ Rk have the same type
if they are equivalent with respect to K = {1, 2, ..., k}. Since the
decision function g is also computable in FPT time with respect
to m, we can enumerate all the types of total generalized score
vectors in the final election which result in p being the winner.
Each enumerated total generalized score vector ~a is specified by,
for each pair of subindices i, j, either ~a[i] > ~a[j] or ~a[i] = ~a[j], or
~a[i] < ~a[j]. Then, we reduce the subinstances to ILP instances. To
this end, we assign variables to different types of votes and derive
restrictions to ensure that the currently enumerated total score vec-
tor coincides with the final election (that is, elections after perform-
ing strategic behaviors). If the given instance is a true-instance,
then at least one of the total score vector leads to a correct answer.
We fix ~a as the currently enumerated total scoring vector. In the
following, we show how to reduce these instances to ILP instances.

Manipulation. Let P = (V1, V2, ..., Vn) be the profile of non-
manipulators, and let ~b = f(P) be the total score vector of P .
Clearly, ~b can be calculated in FPT time since the generalized
scoring function is computable in FPT time. To reduce the ma-
nipulation problem to ILP, we assign variables to all them! possible
linear orders over the candidates, one for each. Let x� denote the
variable assigned to the linear order �. These variables indicate
how many manipulators cast their votes which are defined as �.
Now we introduce the restrictions.

(1) Let t be the number of manipulators, we have

∑
�

x� = t

Here, � runs through all the linear orders in L(C ∪ {p}).
(2) For convenience, for each linear order �, we use f�[i] in-

stead of f(�)[i] to denote the i-th entry of the score vector of� by
the generalized score function f . For each pair i, j ∈ {1, 2, ..., k}
with ~a[i]− ~a[j]� 0, where � ∈ {>,=, <} we have

~b[i] +
∑
�

(f�[i] · x�)−~b[j]−
∑
�

(f�[j] · x�)� 0

Bribery. We divide the votes into P�1 , P�2 , ..., P�t with P�i

containing all the votes defined as the linear order �i. For every
two distinguished linear orders � and �′, we assign a variable de-
noted by x�

′
� , which specifies how many voters from P� are bribed

to recast their votes as �′. Clearly, we have at most m!2 variables.
For each�, letN(�) be the number of the votes which are defined
as� after changing the votes according to the variables assigned to
the instance. More precisely, N(�) is defined as follows.

N(�) = |P�| −
∑
�′ 6=�

x�
′
� +

∑
�′ 6=�

x��′

Now we introduce the restrictions. First, we have the following
restriction since we can change at most κ votes in total.

∑
�6=�′

x�
′
� ≤ κ

Here, � and �′ with �6=�′ run through all the linear orders over
the candidates.

In addition, for each P�, at most |P�| can be changed. Hence,
for each P�, we have

∑
�′ 6=�

x�
′
� ≤ |P�|

Finally, for every i, j with~a[i]−~a[j]�0, where � ∈ {>,<,=},
we have

∑
�

N(�) · f�[i]−
∑
�

N(�) · f�[j] . 0

Control by Adding/Deleting Votes. We first consider the adding
votes case. We divide the unregistered votes into parts each con-
taining all the votes defined as the same linear order. For each part
containing the votes defined as linear order�, we assign a variable
x� which specifies how many votes from this part are included in
the solution. Now we introduce the restrictions.

For each linear order �, let N1(�) be the number of registered
votes defined as�, andN2(�) be the number of unregistered votes
defined as �. Since we can add at most κ votes, we have the fol-
lowing restriction.

∑
�

x� ≤ κ

In addition, for each �, we have

x� ≤ N2(�)

Finally, for every pair i, j with ~a[i]− ~a[j]� 0, we have,

∑
�

(x� +N1(�)) · f�[i]−
∑
�

(x� +N1(�)) · f�[j] . 0

The algorithm for the deleting votes case is analogous.
Partition of Votes with Ties-Eliminate. This case is slightly

different from the above cases. First observe that p has chance
to be the final winner if p is a temporary winner in at least one

of the two subelections. To solve the problem, we enumerate all
possible candidate p′ which will compete with p in the second-
stage election. We immediately discard the enumerations for which
p is not the winner when competing with p′. The above proce-
dure clearly takes polynomial time and leads to polynomially many
subinstances, each asking whether we can partition the profile into
two parts P1 and P2 so that p is the winner in the voting with profile
P1, and p′ is the winner in the voting with profile P2. Therefore,
instead of enumerating all the possible total score vectors as dis-
cussed for the above controls, we enumerate all the possible vector
pairs~a,~b ∈ Rk, where~a is the prospective total score vector for the
voting with profile P1, and~b is the prospective total score vector for
voting with profile P2. We discard all the enumerations for which
p (resp. p′) is not the winner with respect to ~a (resp. ~b). Now, we
adopt the similar method as discussed above to reduce each subin-
stance to an ILP instance. To this end, again we partition the votes
into parts each containing all the votes defined as the same linear
order over the candidates. We still use x� to denote the variable
assigned to the part P� of votes defined as �. Here, x� indicates
how many votes in P� go to P1. The restrictions are as follows.
For each �, we have

x� ≤ |P�|

For every pair i, j with ~a[i]− ~a[j]� 0, we have,

∑
�

(x� · f�[i])−
∑
�

(x� · f�[j])� 0

This equality is to ensure the that p is the winning candidate in
the election with profile P1. The following equality is to ensure
that p′ is the winning candidate in the election with profile P2.

For every pair i, j with~b[i]−~b[j]� 0, we have,

∑
�

(|P�| − x�) · f�[i])−
∑
�

(|P�| − x�) · f�[j])� 0

The proof for the ties-promote model is similar. However, in
this case, we should adopt the multiwinner variation of the gener-
alized scoring rules (which is easily to get as mentioned in [32]) as
a tool. Besides, instead of enumerating a candidate p′, we need to
enumerate all the pairwise disjoint subsets C1 and C2 of the candi-
dates, with p ∈ C1. If p is not the winner in the election restricted
to C1 ∪C2, we discard the enumeration at the moment. Moreover,
the restrictions are derived to making all the candidates in C1 the
co-winners in the voting with profile P1, and C2 the co-winners in
the voting with profile P2.

4. COMMON VOTING RULES
To use the framework described in Theorem 2, we require that

both the generalized scoring function and the decision function
must be computable in FPT time with respect to the number of
candidates. In the following, we show that both the conditions are
fulfilled for all the voting rules stated in Lemma 1.

LEMMA 3. For all the positional scoring rules, Condorcet, Copelandα,
Maximin, STV, Baldwin’s, Nanson’s, Ranked pairs, Bucklin, the
functions f and g associated to the respective generalized scoring
rules are computable in FPT time.

PROOF. We refer to [32] for all the positional scoring rules,
STV, Maximin, Ranked pairs and Copelandα ([32] described only
for α = 0.5. However, with a slight modification, the arguments

work for all the 0 ≤ α ≤ 1). In the following, we prove for the
Condorcet, Baldwin’s, Nanson’s and Bucklin, by describing in de-
tail the specifications of the respective generalized scoring rules.
Hereby, let C denote the set of candidates.

Condorcet. The procedure for Condorcet is the same as for
Copeland as described in [32]. However, in this case, the winner is
the candidate which gets m− 1 points.

Bucklin. The Bucklin score of a candidate c is the smallest num-
ber x such that more than half of the votes rank c among the top x
candidates. The winner is the candidate that has the smallest Buck-
lin score. The respective generalized scoring rule is as follows.
kBucklin = m · 2m−1; the components are indexed by pairs

(c, C) where c is a candidate and C is a subset of candidates ex-
cluding c.

fBucklin(�)c,C =

{
1 if C \ (C ∪ {c}) � c � C
0 otherwise

Here, C is the set of all the candidates in the election. The deci-
sion function gBucklin selects the winner according to fBucklin(P)
as follows. Here, P is the profile of the election as follows. We
keep m sets C1, C2, ..., Cm where Ci is desired to store all the
prospective candidates with Bucklin score i. Initially, all these sets
are empty. Now we show how to update these sets. We put all
the candidates c where fBucklin(P)c,C\{c} >

|P |
2

, into C1. Sup-
pose that we have put all the corresponding candidates into the sets
C1, C2, ..., Ci. We update Ci+1 as follows. A candidate c is put in
Ci+1 iff c 6∈

⋃i
j=1 Ci and

∑
|C|≥m−i−1 fBucklin(P)c,C > |P |

2
.

Here, C runs through all the subsets of candidates of size at least
m − i − 1 which do not contain c. The winner is a candidate in
the set Ci with minimum i and Ci 6= ∅ (a tie-breaking rule is per-
formed if Ci contains more than one candidate).

Nanson’s and Baldwin’s. These two voting rules are multiround
run-off rules, meaning that the winner is selected via rounds in each
some candidates are removed from the election. Specifically, in the
Nanson’s voting, all the candidates with Borda score no greater
than the average Borda score are eliminated in each round. In the
next round, the Borda scores of the remaining candidates are re-
computed, as if the eliminated candidates were not in the voting.
This is repeated until there is a final candidate left. The Baldwin’s
is similar to the Nanson’s with difference that in each round the
eliminated candidate is the one with least Borda score.

Xia and Conitzer [32] proved that for any voting rule with finitely
many run-off rounds, if in each step the rule used to rule out the
eliminated candidates is a generalized scoring rule, then the multi-
round run-off rule is a generalized scoring rule. Moreover, their
(constructive) proof implies that if in each step the generalized
scoring rule has FPT -time computable functions f ′ and g′, with
respect to the number of candidates, the respective generalized scor-
ing rule of the multiruound voting rule (with polynomially many
rounds) also has a FPT -time computable functions f and g. We
refer to Appendix 1 in [32] for checking further details. Due to this
fact, it is sufficient to show that in each round the procedure of se-
lecting the eliminated candidates is a generalized scoring rule with
FPT -time computable functions f and g.

We consider first for the Nanson’s voting. We assume an order
(c1, c2, ..., cm) for the candidate set.
k = m.
f(V) = (s(V, c1), ..., s(V, cm)), where s(V, ci) is the Borda

score of ci from the vote V .

The decision function g selects the winner(s) as follows. Let
avg = 1

m
·
∑m
i=1 f(P)[i]. The winners (the candidates which are

eliminated) are the candidates ci with f(P)[i] < avg.
The Baldwin’s voting is similar with the difference that the can-

didates ci with minimum f(P)[i] are eliminated.

Based on Theorem 2 and Lemma 3, we have the following corol-
lary.

COROLLARY 4. All the manipulation, bribery and the 22 stan-
dard control problems for the following voting rules areFPT with
respect to the number of candidates: all the positional scoring
rules, Condorcet, Copelandα, Maximin, STV, Baldwin’s, Nanson’s,
Ranked pairs and Bucklin.

5. DISCUSSION
The class of generalized scoring rules was introduced by Xia and

Conitzer [32] to investigate the frequency of coalitional manipula-
bility. In this scenario, the focus is how the probability of a random
profile being manipulable changes as the number of manipulators
increases from 1 to infinite. The class of generalized scoring rules
was also used in investigating the margin of victory in voting sys-
tems [30]. Moreover, Xia and Conitzer [33] characterized the class
of generalized scoring rules as the class of voting rules that are
anonymous and finitely locally consistent. A highly related class of
voting rules is the class of hyperplane rules introduced by Mossel,
Procaccia and Racz [21]. Mathematically, the generalized scoring
rules are equivalent to the hyperplane rules [21].

In this paper, we extend the application of generalized scoring
rules by exploring the parameterized complexity of strategic vot-
ing problems. In particular, we show that from the viewpoint of
parameterized complexity, the manipulation, bribery and control
problems which are NP-hard in many voting systems turned out
to be fixed-parameter tractable (FPT), with respect to the number
of candidates. The key point of our FPT algorithms is the com-
patibility of the decision function g in the generalized scoring rules,
which ensures us to enumerate all the desirable total score vectors
in FPT time. Our result gives a new insight into the strategic
behaviors in voting systems, compared to the classic-type analysis
and the average-analysis frameworks. We remark that our frame-
work works for many multiround run-off voting rules such as STV.

To date, many strategic problems have been proved NP-hard.
A challenging task could be to explore the connections between
theseNP-hardness via the notion of the generalized scoring rules.
For this purpose, a deeper exploitation of the functions f and g is
needed. Besides, many new models of voting problems are pro-
posed very recently to the computational social choice community
[11, 23]. Exploring the parameterized complexity of these newly
proposed voting problems via the framework of generalized scoring
rules is also an interesting topic.

Note. Similar results were independently announced by Xia [29].
Nevertheless, there are several differences. First, our results apply
to all the 22 standard control problems, while the results in [29]
does not include the control by partition votes. Second, Xia stud-
ied the winner determination problem which is not discussed in our
paper.

6. ACKNOWLEDGEMENTS
The author thanks the EXPLORE-14 reviewers for their helpful

comments.

7. REFERENCES

[1] N. Betzler. A Multivariate Complexity Analysis of Voting
Problems. PhD thesis, 2010.

[2] N. Betzler, R. Bredereck, J. Chen, and R. Niedermeier.
Studies in computational aspects of voting - a parameterized
complexity perspective. In The Multivariate Algorithmic
Revolution and Beyond, pages 318–363, 2012.

[3] N. Betzler, S. Hemmann, and R. Niedermeier. A multivariate
complexity analysis of determining possible winners given
incomplete votes. In IJCAI, pages 53–58, 2009.

[4] Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A short
introduction to computational social choice. In SOFSEM (1),
pages 51–69, 2007.

[5] V. Conitzer and T. Sandholm. Nonexistence of voting rules
that are usually hard to manipulate. In AAAI, pages 627–634,
2006.

[6] B. Dorn and I. Schlotter. Multivariate complexity analysis of
swap bribery. Algorithmica, 64(1):126–151, 2012.

[7] R. G. Downey and M. R. Fellows. Fixed-parameter
intractability. In Structure in Complexity Theory Conference,
pages 36–49, 1992.

[8] R. G. Downey and M. R. Fellows. Fixed parameter
tractability and completeness. In Complexity Theory:
Current Research, pages 191–225, 1992.

[9] E. Elkind, P. Faliszewski, and A. M. Slinko. On the role of
distances in defining voting rules. In AAMAS, pages
375–382, 2010.

[10] G. Erdélyi, M. Nowak, and J. Rothe. Sincere-strategy
preference-based approval voting fully resists constructive
control and broadly resists destructive control. Math. Log.
Q., 55(4):425–443, 2009.

[11] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra.
Weighted electoral control. In AAMAS, pages 367–374, 2013.

[12] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and
J. Rothe. Llull and copeland voting computationally resist
bribery and constructive control. J. Artif. Intell. Res. (JAIR),
35:275–341, 2009.

[13] P. Faliszewski and A. D. Procaccia. AI’s war on
manipulation: Are we winning? AI Magazine, 31(4):53–64,
2010.

[14] S. Gaspers, T. Kalinowski, N. Narodytska, and T. Walsh.
Coalitional manipulation for Schulze’s rule. In AAMAS,
pages 431–438, 2013.

[15] A. Gibbard. Manipulation of voting schemes: A general
result. Econometrica, 41(4):587–601, 1973.

[16] L. A. Hemaspaandra, R. Lavaee, and C. Menton. Schulze and
ranked-pairs voting are fixed-parameter tractable to bribe,
manipulate, and control. In AAMAS, pages 1345–1346, 2013.

[17] J. J. Bartholdi III, C.A. Tovey, and Michael Trick. The
computational difficulty of manipulating an election. Social
Choice and Welfare, 6(3):227–241, 1989.

[18] H. W. Lenstra. Integer programming with a fixed number of
variables. Mathematics of Operations Research,
8(4):538–548, 1983.

[19] C. Lindner and J. Rothe. Fixed-parameter tractability and
parameterized complexity, applied to problems from
computational social choice. In Mathematical Programming
Glossary, 2008.

[20] N. Mattei and T. Walsh. Preflib: A library for preferences
http: //www.preflib.org. In ADT, pages 259–270, 2013.

[21] E. Mossel, A. D. Procaccia, and M. Z. Racz. A smooth
transition from powerlessness to absolute power. J. Artif.

Intell. Res. (JAIR), 48:923–951, 2013.
[22] R. Niedermeier. Invitation to Fixed-parameter Algorithms.

Oxford University Press Inc, 2006.
[23] T. Perek, P. Faliszewski, M. Silvia Pini, and F. Rossi. The

complexity of losing voters. In AAMAS, pages 407–414,
2013.

[24] J. Pitt, L. Kamara, M. J. Sergot, and A. Artikis. Voting in
multi-agent systems. Comput. J., 49(2):156–170, 2006.

[25] G. Popescu. Group recommender systems as a voting
problem. In HCI (26), pages 412–421, 2013.

[26] A. D. Procaccia and J. S. Rosenschein. Junta distributions
and the average-case complexity of manipulating elections.
J. Artif. Intell. Res. (JAIR), 28:157–181, 2007.

[27] M. Satterthwaite. Strategy-proofness and Arrow’s
conditions: Existence and correspondence theorems for
voting procedures and social welfare functions. Journal of
Economic Theory, 10(2):187–216, 1975.

[28] T. Walsh. Is computational complexity a barrier to
manipulation? Ann. Math. Artif. Intell., 62(1-2):7–26, 2011.

[29] L. Xia. Fixed-parameter tractability of integer generalized
scoring rules (extended abstract). To appear in the
proceeding of AAMAS 2014.

[30] L. Xia. Computing the margin of victory for various voting
rules. In EC, pages 982–999, 2012.

[31] L. Xia. Designing social choice mechanisms using machine
learning. In AAMAS, pages 471–474, 2013.

[32] L. Xia and V. Conitzer. Generalized scoring rules and the
frequency of coalitional manipulability. In EC, pages
109–118, 2008.

[33] L. Xia and V. Conitzer. Finite local consistency characterizes
generalized scoring rules. In IJCAI, pages 336–341, 2009.

