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ABSTRACT
Deciding the outcome of an election when voters have pro-
vided only partial orderings over their preferences requires
voting rules to accommodate missing data. In the worst case,
the missing values from the data can often be completed in
a way that renders the outcome selected by conventional
social choice methods undesirable. Current work using min-
imax optimization techniques to select the winner can miti-
gate the impact of a worst-case completion, but may select
winners that are unlikely. We propose a novel application of
machine learning techniques to predict the missing compo-
nents of ballots via latent patterns in the information that
is provided. Although we do not offer a worst-case guaran-
tee on performance, we show that suitable predictive fea-
tures can be extracted from the data, and demonstrate the
high performance of our new framework on the ballots from
ten real world elections, including comparisons with exist-
ing techniques for voting with partial orderings. Our tech-
nique offers a new conceptualization of the problem, with
stronger connections to machine learning than conventional
social choice techniques, and with a stronger emphasis on
real world performance than worst-case bounds.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics
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1. INTRODUCTION
It is often necessary for a community of agents to reach

a collective decision about a course of action, division of re-
sources, or policy change. Agents have different beliefs about
the relative quality of different alternatives, making it diffi-
cult to determine which alternative is most preferred overall.
This is the origin of social choice problems, which arise both
within multiagent systems (e.g. agent coordination) and the
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world at large (e.g. candidate rankings at a hiring commit-
tee). As recognised by public choice theory [1], casting a
ballot in an election has an inherent cost. In this paper,
we are especially interested in the part of that cost associ-
ated with the effort of determining and specifying one’s own
preferences, which may be considerable. Agents who do not
know enough about the alternatives to formulate a complete
opinion cannot report their true preferences on their ballots.
Consequently, if gathering the required information becomes
too expensive, rational voters may provide only partial in-
formation, or simply forego voting entirely [2], presenting
a significant challenge for conventional social choice tech-
niques. Addressing this amounts to determining the outcome
of an election with only partial information, and can yield
strange worst-case outcomes. For example, rules like Borda’s
count, which are designed to avoid selecting the Condorcet
loser, may nonetheless select such a candidate on the basis
of partial information. An extreme case for this would be
an election where ordered preference ballots were truncated
to include only first preferences. With so little information,
Borda’s count behaves like the popular plurality rule, and
can select a Condorcet loser as the victor.

While existing techniques for partial ballot elections [11,
12, 19] have focused on circumventing the problems posed
by missing information, we propose the use of classifica-
tion algorithms to restore the missing components of each
voter’s ballot instead. Once the missing components have
been restored, any of the ordinary, established, techniques
for picking the winner (i.e. any social choice function) may
be applied to these newly completed ballots to determine
the outcome of the election.

A prototype implementation of our new system performs
well on real world ballots. In addition to exhibiting a low
error rate for the restoration of individual preferences, our
new technique can recover the correct winner in nearly all
instances, and close approximations of the entire ordering
for use in multi-winner selection1. This illustrates the great
potential role for machine learning in social choice [18], as
well as providing a novel alternative technique for selecting
a winner in elections with partial ballots.

2. SOCIAL CHOICE AS IMPUTATION
Social Choice problems arise when a set of agents wish to

collectively agree on a common course of action. Each agent
is assumed to have preferences about the relative quality
of each alternative, which can be expressed as an ordering

1i.e. correctly selecting the top k candidates in an election
where there are to be k ‘winners’



over the alternatives. We refer to an agent’s actual beliefs
about the relative order of candidates as their preference
profile, and their stated ordering (i.e. what they report to
others) as their ballot. In this work, we will usually assume
that voters are truthful, and report a ballot that does not
misrepresent their preferences. Consequently, we will use a
voter’s preference profile to refer to their hidden true beliefs,
and their ballot to refer to their reported (likely partial)
preferences.

Given the ballots of the voters, the problem of social
choice is simply to select a ‘winning’ alternative that will
appease them. Unfortunately, this is not as straightforward
as it might appear. To select a winner, we must first agree
on a method of picking one (a social choice function). Even
a seemingly agreeable method like picking the alternative
with the highest average approval can lead to wildly dif-
fering outcomes depending on something as subtle as the
meaning of ‘average’. Using the median alternative amounts
to Condorcet’s pairwise comparison rule, while using the
mean yields Borda Scoring, and the mode Plurality [1]. The
choice is not merely cosmetic — it could produce signifi-
cant differences in the outcomes of the election. It is further
complicated by a number of negative axiomatic results that
demonstrate the mutual exclusion of various desirable prop-
erties for voting rules. In sum, these mean that the selection
of an appropriate social choice function is itself a difficult
exercise in social choice.

A further complication of the social choice problem is the
introduction of partial preference orderings. In such a prob-
lem, voters may specify a more limited ballot, in which some
alternatives do not have a specified position. The selection
of a social choice function now entails a choice about how
to treat the missing components of the ballots. For example,
we might ignore the missing components [19], or fill them in
with a conservative ordering in an effort to avoid picking a
bad outcome [11]. In this paper, we present and argue for
a new approach in which the votes themselves are used as
the basis for determining how the missing components will
be treated. We argue that insofar as this approach is equiva-
lent to voting on a method for handling missing information,
it inherently better reflects voters’ desires than techniques
which adopt a policy a priori. We expand further on this
hypothesis in the next subsection.

2.1 Imputation
Imputation is the process of replacing missing data (re-

ferred to as “missingness” here, as in most imputation work,
or as “incompleteness” in some social choice work) with a
carefully selected guess at the missing value [16]. For in-
stance, if a person’s age is missing from an otherwise com-
plete questionnaire, a very simple imputation technique would
replace the missing age with the average age of the other
questionnaire-takers. A more sophisticated technique would
be to use the age of another questionnaire-taker with sim-
ilar demographic characteristics, especially those known to
be correlated with age.

While imputation techniques are widely used in other do-
mains with missingness, we are unaware of any direct ap-
plication of imputation to the problem of missingness in
election ballots. Intuitively, however, imputing the missing
components of these ballots is possible because real-world
votes have underlying structure: not every ordering of alter-
natives is equally likely to appear on a ballot. By exploiting

this fact, we hope to provide outcomes more reflective of
the electorate’s desires than techniques that treat missing
components independently of the content of the ballots.

2.2 Our Model
In the context of this work, we say that a social choice

problem consists of selecting from among a set of alternatives
O, according to a set of N ballots collectively represented by
the vote matrix R, which we treat as a set of ballots (rows).
The vote matrix is organized so that each row represents the
preferences of a user, with their most preferred preference
in the first column, and each following preference placed in
a following column. For instance Ri,j would be the jth most
preferred candidate of voter i.

A given ballot (row) ri ∈ R thus consists of a total order-
ing over an arbitrary subset of O. We assume the elements of
O that are not on the ballot are of lower rank in the voter’s
preferences than those candidates that were ranked2.

The selection of the winning element of O is conducted ac-
cording to some social choice function S. S maps sets of com-
plete ballots (Rc ∈ P(O)N ) to outcomes (o′ ∈ O). Finally,
we denote the vote matrix formed by the first j columns of
R with Rj . For instance, R1 denotes the first preferences
of every ballot, while R2 denotes the first and second pref-
erences of every ballot. We assume that there are at least
two candidates (|O| ≥ 2), at least two ballots (N ≥ 2), and
that every ballot has at least one candidate ranked on it
(|ri| ≥ 1, ∀ 1 < i ≤ N).

Our system begins by extracting R2, the first and second
preferences of every voter’s ballot. Some ballots may state
only a single preference, and it is this issue that our sys-
tem will address. Taking the subset of R2 which is complete
(Rc2 = {r ∈ R2| |r| = 2}), we train a classifier c2 = C(Rc2)
using a classification algorithm C, which predicts the sec-
ond preference of each ballot from their first preferences.
We then use c2 to impute R2 \ Rc2 , generating a complete
ballot matrix of two columns. We call this imputed ballot
matrix R′2

Having accomplished this, it is naturally possible to ex-
tend the process to the next column of R. We simply take
the ballot matrix of the first, second and third preferences
(R3), impute any missing values in the second column using
c2, and then build a classifier c3 on Rc3 , which we can use
to impute R3 \ Rc3 and generate R′3. We can iterate this
process until the generation of R′|O| = R′, an imputation of
the entire ballot matrix. A winning alternative can then be
selected by applying S to the imputed matrix: S(R′) = o′.
We formalize this process in Algorithm 1.

2.3 Imputation as Social Choice
It is natural to wonder what properties might follow from

picking a winner in this fashion. Interestingly, we can show
that the process is itself reducible to a social choice prob-
lem with respect to the model selected by our classification
algorithm. A number of results follow naturally from this.
For instance, it will be possible to manipulate the choice of
model and, depending on the underlying voting rule S, may
be more or less computationally difficult to do so.

We begin by formally defining a classifier as an imputa-
tion model which selects imputations for incomplete ballots

2Note that this is not equivalent to the usually assumed
partial orderings, but is equivalent to the top-t orderings
which are used by Lu and Boutilier [11].



O Set of candidates (alternatives)
N The number of ballots
R Set of ballots

ri The ith ballot in R
S The social choice function
Rj Top j preferences of every ballot
Rcj Top j preferences of every ballot with j or more.

R′j Rj after imputing any missing jth preferences.
o′ The selected alternative.
C A classification algorithm.

cj A classifier trained to impute the jth column of R.

Table 1: Notation used throughout this paper.

Algorithm 1 Algorithm for selecting a winning alternative
in an election with partial ballots using imputation.

1: function Impute Ballots(O,R,S,C)
2: for all 2 ≤ j ≤ |O| do
3: LET cj ← C(Rcj

)

4: SET missing ← Rj \ Rcj

5: for all 2 ≤ k ≤ j do
6: missing ← ck( missing )
7: end for
8: SET R′j ← Rcj

∪ missing

9: end for
10: RETURN o′ ← S(R′|O|)

11: end function

on the basis of complete ballots alone. A classification al-
gorithm C maps a complete ballot matrix Rcj to a partic-
ular imputation model according to a deterministic policy
T . For example, least squares linear regression would select
a regression model cj = C(Rcj ) by minimizing the squared

difference between the model’s predictions of the jth column,
and the values actually present there.

A chained classifier is a full imputation model that takes
a partially complete ballot matrix (R) and produces a fully
imputed matrix R′ using a series of classifiers on each col-
umn of the data in turn (i.e. the procedure in Algorithm 1
above). A scoring rule based social choice function operates
by assigning each candidate a numeric score as a function
of the ballots, and then selecting candidates based on their
relative scores. For instance, the Borda Count scoring rule
assigns scores as the sum of the position of the candidate
on each ballot. We will show that every chained classifier is
equivalent to using a scoring rule based social choice function
to select the imputation — that is, that chained classifiers
operate by treating voters’ ballots as voting for particular
imputation policies. We begin by showing that this is true
of every (non-chained) classifier.

Lemma 1. Every classifier is equivalent to a scoring rule
based social choice function.

Proof. A social choice function in this context is any
function mapping a set of complete orderings over some fi-
nite set of outcomes (votes), to a single outcome. A classifier
that predicts missing values in the jth column of a N × |O|
matrix functions by selecting and then applying a policy
using a set of complete orderings over j of |O| possible out-
comes. Note that, if there are Nic incomplete rows in the
matrix provided (R), then there fewer than (|O| − j + 1)Nic

possible imputations that could complete R (each row has

j − 1 elements already specified, out of |O| outcomes). Call
this the outcome space Oimpute of our classifier, and note
that this space is finite. Additionally, note that, although
rows of R are not complete orderings over Oimpute, we can
design a mapping from the complete preference space to the
format of an ordered ballot containing j − 1 elements. Rep-
resent the process of selecting an imputation policy cj from
the completed votes as a function T , and note that this
function is deterministic and produces exactly one output
(T is a deterministic model selection algorithm for classifi-
cation). Define tcandidate = T (Rc) as the classifier selected
by applying T to the completed ballots in R to select an
imputation policy, and Rcandidate = tcandidate(Ric) as the
Nic × 1 vector produced by the application of this policy to
the incomplete ballots (Ric = R \Rc). Then we can define a
scoring rule Sj over candidate imputations: Sj(Rc, Rother) =
−∆(Rother, Rcandidate), where ∆ is the number of vector
components in which the two vectors have different values
(i.e. the sum over component-wise delta functions). A social
choice function over Oimpute that selects the outcome with
the highest score in Sj will produce identical output to a
classifier selected via T , and thus, is equivalent.

Theorem 1. Every chained classifier is equivalent to a
scoring rule based social choice function.

Proof Sketch: The proof is by induction on the number
of candidates. It is easy to show using Lemma 1 that if
j = 2, any chained classifier has an equivalent scoring rule.
From this, it is possible to define a scoring function for
larger values of j using the recurrence: Sj(Rc, Rother) =
−∆(Rotherj , Rcandidate) +Sj−1(Rcj−1 , Rotherj−1), where Sj−1

is the scoring function for the chosen chained classification
algorithm on ballots with j − 1 candidates.

The implication of Theorem 1 is that using classifiers for
imputation entails holding a vote on the treatment of miss-
ingness in the data. A number of results follow directly from
this theorem. For instance, every chained classification algo-
rithm will elicit strategic play from voters (by the Gibbard-
Satterwaith theorem), but can also provide computational
resistance to manipulation provided the scoring rule used for
the actual election S is similarly resistant. Although we do
not explore this result further here, there are many promis-
ing avenues of research following from it.

3. VALIDATION
In this section, we present the application of our imputa-

tion based approach to social choice to several sets of ballots
from the preflib.org repository [13]. We show that using
imputation to select the winner produces accurate results,
and that the system is usable in the real world. Section 5
below provides a comparison with existing algorithms for
the same data, as well as more qualitative comparisons. Our
experimental design measures the ability of a classification
algorithm to correctly predict missing preferences in each
data set, using several different sets of features. As clas-
sifier performance is highly sensitive to the data used for
training models, we generated many different randomized
ablations of the data, and evaluated the quality of our mod-
els in terms of their average performance. The remainder
of the section describes the datasets, our preprocessing and
feature selection procedures, and the machine learning algo-
rithms themselves. We then provide a precise description of
our experimental design.



3.1 Data
We selected several elections from the Irish and Debian

datasets3, which are both comprised of real-world ballots
with ranked preference formats. In both sets, voters were
able to omit preferences if desired. From the Debian set,
we took the election data for the seven leadership elections
from 2002-2012, and the vote on the Debian Project logo.
From the Irish set we took the ballots from the Dublin North
and Dublin West constituencies. Collectively, these elections
provide good diversity both in terms of the number of can-
didates running, and the degree of missingness in the voters’
preferences. This is summarized in Figure 1a, which shows
the percentages of information missing from ballots in each
election. While the Debian sets are missing between 10 and
20% of the preference information (with the exception of the
logo set), the Irish sets have much higher missingness, pos-
sibly reflecting the larger number of marginal candidates in
national politics, or lower voter enthusiasm. Naturally, the
Irish sets also have far more ballots than the Debian sets.
While the former have tens of thousands of ballots, of which
thousands are complete, the latter typically have only a few
hundred completed ballots. Figure 1b provides an example
of the distribution of missingness, showing that while nearly
all users are able to specify their first few preferences, there
is an extremely rapid drop afterwards , with only about 10%
of voters completing their ballots. This illustrates how chal-
lenging the machine learning problem will be: correctly im-
puting a single ballot may entail making eight or nine correct
classifications.

Although we selected these sets to provide a reasonable
variety of different missingness levels and election sizes, they
also provide some basis for comparison with prior work. The
two Irish sets have also seen prior use benchmarking the
performance of other voting systems [11, 19, 12], offering a
compelling reason for their inclusion. However, because our
proposed imputation based social choice relies on using nu-
merical techniques to address the missingness in the data,
some careful processing of the data is required prior to ap-
plying the new technique.

3.2 Preprocessing
Numerically coding the ballot data in our sets into a ballot

matrix does not produce usable results in any classification
algorithm we have applied. This data requires careful pre-
processing and feature construction to provide good results4.

The first preprocessing step consisted of measuring the
empirical distribution of missingness for each dataset, that
is, the proportion of ballots with at least k preferences spec-
ified for 1 ≤ k ≤ N . We then discarded all ballots for
which the complete preference data were not provided, fol-
lowing [11], to ensure that ground truth information would
be available for our assessment of performance. The remain-
ing data were ablated in a fashion consistent with the em-
pirical distribution of missingness for the original dataset, to
generate ballots with a level of missingness similar to that of

3http://www.preflib.org/election/{irish,debian}.php
4We do not claim that the preprocessing steps we describe
are the best available; they do at least provide a set of usable
features in a data format which many common classifiers are
able to process. We expect that further development of this
area could provide better features, and as such, our results
will provide only a lower bound on the performance of the
proposed technique.

real world data, but for which the ground truth was known.
The second phase of preprocessing involved extracting us-

able features from the data. First, we transformed each bal-
lot from a relative format (e.g. x � y � z), to an absolute
format (e.g. x:1,y:2,z:3). This provides a more consistent
set of features for the classifier, since a high ranking in fea-
ture x indicates the importance of x as a candidate on its
own. We then added two more sets of features to provide a
clear quantification of the relative positioning of each set of
candidates. For each pair of elements in the set of alterna-
tives o1, o2 ∈ O, we defined one feature I(o1 � o2) to be an
indicator variable for whether o1 � o2, and another ∆(o1, o2)
to be the difference in the relative positions of o1 and o2 in
the ordering. For instance, in the ballot x � z � y, the fea-
ture I(y � z) is 0 (false), and the feature ∆(x, y) is 2 (Since x
is at position 1 and y is at position 3). When candidates did
not appear on a ballot, we used the value “NA” for the abso-
lute position features, and for any of the pairwise features in
which that candidate appeared. The addition of these new
features constitutes the injection of domain-specific knowl-
edge into our classifier, which is necessary for the achieve-
ment of high performance on most machine learning tasks.
Note that we are providing only features that can be com-
puted from the training data, and that the classifier must
still build a predictive model of partial preferences without
using any information about the hidden preferences them-
selves (i.e. the test data).

The third step consisted of applying feature selection tech-
niques to the data. We considered several feature selection
approaches, including Principal Component Analysis (PCA)
and Information Gain (IG) [7]. In both cases, we were inter-
ested primarily in the possibility of speeding up training of
classifiers without significant reductions in performance. We
used R implementations of both algorithms [15]. For PCA,
we used the prcomp function to obtain the principal com-
ponents, and discarded all components with eigenvalues less
than 10% of the first principal component’s. For IG, we used
the FSelector package and discarded all but the 10 most pre-
dictive features from the original set. After performing the
above procedures, we were left with three complete datasets:
one containing the cleaned data with the original features,
one with the PCA features, and one with the IG features.
All three sets were used in our validation. Consistent with
standard practice, we used only the data from our training
set (the ablated ballots) to construct the alternative feature
spaces. We then projected the test set data (i.e. the known
user preferences from our ground truth) into the resulting
space for the evaluation of any classifiers produced with the
training data. The final step in our preprocessing was a stan-
dard normalization and centering of the data, to make it
more suitable for use in classification. We then applied our
classification algorithms.

3.3 Classification
As there exist a variety of conventional classification algo-

rithms, it is not immediately apparent which is best suited to
a given application domain. This is particularly true in the
case of voting data, because the problem has many classes,
and often has great imbalance between the classes as well
(e.g. some candidates are much more likely to appear as
first preferences than others). For this reason we considered
several classifiers.

Most prominently, we used Support Vector Machines (SVMs).
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(a) Bargraph the percentage of missing preferences for each
dataset. The Debian project leadership elections (’02 - ’12)
and logo election are shown in white. Green bars show the
Dublin North and Dublin West voting districts from the Irish
election dataset.
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(b) Plot showing the distribution of completed preferences in
the Dublin North dataset. The horizontal axis shows the num-
ber of preferences indicated, while the vertical axis shows the
proportion of voters who indicated at least that many prefer-
ences. Note the rapid drop starting after the third preference.

Figure 1: Plots summarizing the datasets used for validation.

These classifiers select models from the set of possible hy-
perplanes that separate different classes (candidates in our
context) in the feature space (preference space in our con-
text). They differ from other classifiers of this sort by au-
tomatically projecting the data into a higher dimensional
space using combinations of the provided features. This of-
ten causes the data to become linearly separable (or nearly
so), providing high accuracy for hyperplanes selected from
this larger space. We used the popular libsvm implementa-
tion [3] for our experiments. This implementation provides
native support for multiclass problems and missing values,
so the only additional work was converting our datasets into
the application’s data format5.

As these classifiers are not purpose-built for the task at
hand, they do not incorporate the constraint that no can-
didate may appear more than once on the same ballot. To
address this problem, our classifiers provide a probability
distribution over the classes as their output. We then select
the most probable label that does not already appear on the
given ballot as the classifier’s proposed label.

3.4 Measurement of Imputation Quality
Our experiment consisted of repeatedly ablating a given

dataset according to its measured distribution of missing-
ness, and then using the preprocessing steps described above
to render the data usable. We then applied our classifiers
to each of the three resulting feature sets according to the
procedure in algorithm 1, and compared the results to the
ground truth. We assessed performance with two different
measurements, based on the Borda Scores of candidates.

Our first measurement reflects the overall accuracy of the
imputations produced by our classifiers. It consists of the

5We also considered a number of other classifiers including
multinomial regression, Naive Bayes, the C4.5 decision tree
and one-vs-all multiclass logistic regression. In general these
techniques were outperformed by the SVM, even after care-
ful parameter tuning. As such, we present only the SVM
results here.

sum of differences between each candidate’s predicted and
actual Borda Score, normalized by the total Borda Score for
all candidates in the election. Thus, for a set of candidates
O, and where BC(o,R) is the Borda Scoring rule result for
candidate o with imputed ballots Rc and ground truth bal-
lots Rg, we write this measurement:

BCerror(O,Rc, Rg) =

∑
o∈O |BC(o,Rc)−BC(o,Rg)|∑

o∈O BC(o,Rg)

The measurement is equivalent to classification accuracy
with errors weighted according to the difference between the
correct and actual positions of a candidate on the ballot.

Our second measurement addresses the possibility of im-
putations which achieve low BCerror by assigning dispro-
portionately many votes to one candidate at the expense
of the others. For instance, if a candidate received only a
few hundred votes in the ground truth, a reasonably good
BCerror can be obtained by assigning all missing votes for
this candidate to someone else. Although this produces a
low error rate, the errors are not spread throughout the can-
didates proportionately. The outcome of the election could
thus be significantly changed. This is analogous to the class
imbalance problem in more typical machine learning appli-
cations [8].

To quantify this tendency, we measure the correlation
between the error (|BC(o,Rc) − BC(o,Rg)|) in a candi-
date’s Borda Count with the magnitude of their count in
the ground truth. A strong correlation indicates that the
classifier has a large bias (typically toward more popular
candidates) while a lower value shows the opposite. A high
bias is undesirable, because it indicates that the classifier is
not learning the relationships between marginal candidates
at all, and instead assigning their share of the imputed bal-
lots to more popular candidates.

We generated 50 unique random ablations of each dataset,
providing 50 directly comparable data points for each combi-
nation of dataset and feature set. Each point corresponds to



a single randomized ablation of the target dataset according
to our preprocessing procedures. We selected SVM param-
eters automatically for each such point using a customized
grid search over the C and γ parameter spaces, and the sig-
moid and RBF kernels. Five-fold cross validation over the
training data was used to guide the search.

3.5 Results
The proposed, imputation based, approach to social choice

relies on the ability of machine learning algorithms to pro-
vide reasonable imputations of user ballots. This is by no
means certain, as the resulting machine learning problems
are quite difficult. For example, the Dublin North election
has twelve candidates and only about 40% of the total prefer-
ence information. This results in a twelve-class classification
problem with many features missing on any given record.
Despite this, our procedures yield classifiers with relatively
high performance, strongly validating our approach.

Figure 2a shows the BCerror rates for the SVM classi-
fiers on each combination of feature set and dataset (Plain
denotes the full set of features, while IG and PCA denote
the corresponding feature selection techniques). In general,
this error rate is quite low. The information gain feature set,
which provided the strongest performance, has error rates of
1% or less on every set of ballots. While the other feature
sets exhibited somewhat worse performance, even they have
error rates well under 2% on the more challenging sets. Also
noteworthy is the relatively weak relationship between the
amount of missing data and the magnitude of the BCerror.
For instance, the 2002 Debian election set has one sixth the
missingness of Dublin North, but only half the error rate.

Figure 2b provides a partial explanation for this. The plot
shows the bias, measured as the correlation between a can-
didate’s Borda Score and the candidate-specific component
of the BCerror measure, for the SVM classifiers produced
on each dataset/feature set combination. Notably, the in-
formation gain feature set exhibits significantly worse per-
formance than the other two sets here, with a strong rela-
tionship (typically a negative one) between the number of
votes a candidate received and the error rate in assigning
votes to that candidate. The Debian ’02, ’10, and ’12 sets
provide evidence of semi-degenerate classifiers, which arise
when data have a very high degree of class imbalance (i.e.
when some candidates receive far more votes than others).
These classifiers have poorly defined decision boundaries be-
tween the large and small classes in the set, but in practice,
it appears that the boundaries between pairs of small classes
are still learned — the overall ordering of the candidates is
preserved (see Section 5). There are many techniques for ad-
dressing these issues (e.g. DSS [6]), and we expect that their
application could enhance performance further on highly im-
balanced sets.

Our results demonstrate the practicality of social choice
through imputation. Models produced low error rates on all
the datasets considered, and although some higher biases
were present, on most datasets they are small enough to
be acceptable, despite indicating somewhat lower accuracy
for marginal candidates. Run times were 1–20 minutes for
each data point gathered, on a single core of a contempo-
rary desktop machine. Most of the runtime was spent on the
parameter tuning of the SVM, an inherently parallelizable
process. In summary, imputation based social choice is a vi-
able and fast technique, applicable to real world problems.

4. RELATED WORK
While our approach to solving the “truth-tracking” prob-

lem of social choice with partial preferences is novel, there
exists considerable prior work on this problem, much of it
coached in terms of vote elicitation. We begin with a sum-
mary of this work, before providing a more detailed compar-
ison with the similar minimax regret approach to the prob-
lem [11, 12], including a comparison on the datasets used in
our validation above.

Much of the earlier work is concerned with the determi-
nation of possible and necessary winners from a set of par-
tial preferences [10]. For the intuition behind this problem,
consider a set of ballots with only a few votes missing. Un-
less the election was exceptionally close, these missing votes
may no longer matter, in the sense that even if the voters
all colluded to sway the result, the margin of victory may
exceed their collective influence. In such a case, the win-
ner is completely determined by the completed ballots —
there is a necessary winner implied by the ballots that have
been cast. Even if the ballots do not imply a unique winner
they may limit the set of possible winners. For example, a
candidate may have received so few votes that they are out
of the running without even counting the remainder of the
ballots. Early work by Konczak and Lang [10] considered
the problem of determining necessary and possible winners
from partial preference ballots, notably establishing that a
family of positional scoring rules allowed this determination
to be made in polynomial time. More recent work by Xia
and Conitzer [19] considered nine voting rules and showed
a variety of NP- and coNP-completeness results for find-
ing necessary and possible winners. However, like Lu and
Boutilier [11], we differentiate our work from this area by
virtue of it picking a winner (more precisely in our case, a
winning ordering for the outcomes) on the basis of partial
information, rather than providing a set of possible winners
entailed by the preferences.

Interest in vote elicitation extends back to at least the
2002 work of Conitzer and Sandholm [5], who considered
the problem of eliciting preferences from strategic voters,
that might not wish to reveal their true preferences. A flurry
of more recent work has examined the practical aspect of
the problem, emphasizing elicitation of more informative
preferences. Kalech et al.’s work [9] showed that, although
complete information is required to make optimal decisions
in the worst case, many real world applications yield solu-
tions with far less preference information. Similarly, Oren et
al. [14] considered the number of top-t style queries (where
voters are repeatedly asked for their next highest preference)
required to find the underlying global preference ordering
given certain assumptions about the underlying distribution
of voter preferences, while Soufiani et al. [17] examined a
similar problem for general random utility models. Our work
differs from this recent context insofar as it does not recom-
mend a particular elicitation strategy for voters, but instead
works with the preferences it has been given directly to ac-
complish the same goal6.

6We note an interesting parallel however. While our im-
putation based techniques are akin to the application of
traditional classifiers to the partial preference social choice
problem, vote elicitation schemes are more similar to active
learning [4], an alternative approach in which the algorithm
automatically decides which pieces of information to ask for
next, while at the same time inferring patterns about the
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tween # votes and magnitude of imputation error).

Figure 2: Results on datasets from the Debian leadership ’02-’12, Debian logo , and Dublin North and west elections. Whiskers
show a 95% confidence interval for the mean of each combination of feature set and dataset.

The work most similar ours is that of Lu and Boutilier [11],
who proposed the use of minimax regret as a heuristic mea-
sure for selecting a winner from partial preferences. Here,
each candidate is considered in turn. For each candidate,
a completion of the ballots making the candidate as unde-
sirable as possible is computed. The candidate most desir-
able in spite of their corresponding worst-case completion
becomes the winner. Validation consisted of demonstrat-
ing that elicitation guided by minimax regret (MMR) could
rapidly find correct single winners.

Irrespective of the performance obtained by this strategy,
there are a number of reasons to suppose our imputation
based approach should be preferred, at least in some situa-
tions. Chief among them is that the result in the minimax
regret system is produced by the most pessimistic imputa-
tion of the ballots possible, while our system selects a result
based on ballots that are as consistent as possible with the
patterns of voting that we were able to observe. In applica-
tions where voters expect an outcome that is consistent with
their beliefs, the suggestion that their own ballot was com-
pleted with an implausible preference ordering is an unpalat-
able one. Additionally, an imputation based approach can
provide a more realistic assessment of the distance between
candidates in the final result. While the minimax regret sys-
tem uses different completions of the ballots to compute the
worst-case regret for each candidate, our system uses the
same imputation to produce an overall ranking of the candi-
dates according to a provided scoring rule. Two candidates
with similar scores on a given imputed set of ballots may
have dramatically different scores on their respective worst-
case sets, and vice versa. Imputation based social choice,
by virtue of working with a single, comprehensive, imputa-
tion of the ballots, can take advantage of existing techniques
for multi-winner social choice with complete preferences (A
topic examined as well by Lu and Boutilier, again employing
a minimax regret solution [12].).

5. COMPARISON WITH MMR
For a more direct comparison between the minimax re-

gret and imputation based techniques, we ran the MMR

set.

algorithm on the same 50 ablations of the datasets used in
our validation experiments (Section 3 above). We measured
performance for both the single winner case (i.e. selecting
the correct winner relative to the ground truth), and the
Kendall Tau distance (bubble-sort distance) between the ob-
tained rankings for each technique and the ground truth, a
measure of performance in the multi-winner case. Our im-
plementation of the minimax regret algorithm was based on
the single winner MMR algorithm [11], with a customized
extension to generate rankings of the candidates based on
their minimax regret rankings. As in our earlier validation,
we used the Borda Count scoring rule to determine winners.

In the single winner case, we measured the mean distance
between the candidate selected by each method and its po-
sition the ground truth reference. For example, a method
which always selected the correct winner has a value of 0,
while one that always selects the third place candidate has
a value of 2. Performance is summarized in Table 2. We find
that the two algorithms are broadly similar. Both techniques
select the correct winner 100% of the time on most of the
sets. Imputation often selects the second place finisher as the
winner on the Debian 2007 set, but this was an especially
close race, decided by just 15–20 ballots (depending on the
particular ablation). MMR consistently selected the second
place finisher on the Dublin West set (indicated by the value
of 1.0), where the election was decided by nearly 500 ballots.
The other differences are not statistically significant.

In the multi-winner case, imputation usually finds high
quality overall orderings, but sometimes inverts the order of
narrowly separated candidates. In the Debian ’02, ’03, ’10,
and ’12 sets, the two algorithms have statistically identical
performance. The ’05, ’06, ’07, logo, and Dublin West sets
all show an advantage for MMR, but only a very slight one
— often just a single swap of adjacent candidates separates
them. On the Dublin North set however, an average of more
than 9 adjacent swaps separates the algorithms. This ap-
pears to result from the extremely high missingness in the
data, especially for marginal candidates. This lack of pref-
erence information, coupled with the presence of 12 candi-
dates, made for some very difficult classification problems.
Many of the classifiers were trained on 12-class problems



Set Imputation MMR ∆(τ)

02 0 0 0
03 0 0 0.04
05 0 0 0.42
06 0 0 0.5
07 0.82 0 1.4
10 0 0 0.04
12 0 0 0

logo 0.12 0 0.56
North 0.22 0 9.46
West 0.26 1.0 1.68

Table 2: Comparison of Imputation Based Social Choice
with MMR for both the single and multi-winner cases. Bold
entries show statistically significant differences. The first col-
umn shows the datasets used, the second and third show the
mean position in the ground truth ordering of the candidate
selected by each method. The fourth shows the difference
between the Kendall Tau distances from MMR and Impu-
tation to the ground truth for the multi-winner case.

with high imbalance and as few as 300 instances to work
from. We anticipate that with a larger number of ballots,
or a smaller number of candidates, imputation based social
choice could perform well even on sets with such a high
amount of missingness.

Collectively, the results are encouraging. Our prototype
imputation based social choice system selects the correct
single winner in the vast majority of cases across all of the
datasets considered, and when mistakes are made, they tend
to be small (e.g. selecting the second place finisher in a close
election). Performance in completing the entire ordering is
also surprisingly good. On a third of the sets we find the
correct ordering essentially all the time. Most of the remain-
ing sets typically exhibit only a single error. Only the Dublin
North dataset, with its extreme missingness, proved difficult,
but even here the most highly ranked candidates in the or-
dering are usually correct, exhibited by the low single-winner
error rates. We expect that with additional refinement, im-
putation based social choice could provide consistently good
performance, even in these extreme cases.

Overall we view imputation based social choice as an al-
ternative approach to minimax regret. We solve a similar,
but not identical, set of problems, in a way that may of-
fer advantages when users want their ballot to provide a
plausible completion of their (unknown) preferences, and
where it is important to have a consistent view of the rel-
ative performance of different candidates. For instance, a
voter who marks down a preference for a social democratic
party might experience considerable regret if they discover
their ballot has been completed to rank a nationalistic con-
servative party highly, even if this maximizes the difference
between her first choice and the nearest opposition.The min-
imax regret approach may be more suitable when very lim-
ited ballot information is available. Minimax regret may also
be more appropriate when preferences are being gathered
gradually, instead of provided as a static set.

6. CONCLUSIONS AND FUTURE WORK
We have presented and validated a novel approach to the

problem of social choice with partial preferences. Our new
approach imputes the missing components of the ballots us-
ing patterns inferred from the ballots themselves. This allows
conventional voting rules for complete preferences to be ap-
plied directly, and provides a ranking based on a plausible
completion of the ballots, rather than an unlikely worst-
case arrangement. We showed that the process of picking an
imputation is itself a form of implicit social choice, which
allows results like the Gibbard-Satterwaithe theorem to be
directly applied to the new model, and that it performs well
on a large number of real-world election datasets. We also
performed a direct comparison with the minimax regret sys-
tem of Lu and Boutilier [11], showing that our preliminary
model picks the correct winner at nearly the same rate, and
exhibits generally low error rates on the rest of the ordering
as well. A notable exception is in the case where the ballots
have exceptionally high missingness, where our methods re-
quire additional refinement to perform well.

An especially interesting component of our work is the fu-
sion of conventional social choice with standard techniques
from machine learning. There are strong parallels between
these fields, and much room for similar future work (See
Xia’s Visions paper [18].). Some interesting extensions might
include the application of machine learning models that are
specifically designed for problems with a large amount of
class imbalance; exploring the connection between active
learning and vote elicitation more carefully; and experiment-
ing with a broader set of features on the ballots.

There are also a number of extensions from the social
choice direction. A good starting point would be extending
the imputation model to accept general partial orders in-
stead of just top-t style preferences. One possible approach
to this would be representing the partial order as a set of
features, and predicting the entire ballot, preference by pref-
erence, on that basis. This would still require at least some
information about the absolute position of the elements of
at least some of the preference profiles for training purposes
however. The interaction between different scoring rules and
the imputation based approach could also be interesting. In
this work we have considered only the Borda scoring rule,
but it is possible that other rules may be more or less sen-
sitive to the types of systematic errors that classifiers some-
times produce.
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